提交 01c61481 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!864 update lite docs

Merge pull request !864 from hangq/master
# Build
<!-- TOC -->
- [compilation](#compilation)
- [Linux Environment Compilation](#linux-environment-compilation)
- [Environment Requirements](#environment-requirements)
- [Compilation Options](#compilation-options)
- [Compilation Example](#compilation-example)
- [Output Description](#output-description)
- [Description of Converter's Directory Structure](#description-of-converter-directory-structure)
- [Description of Runtime and Other tools' Directory Structure](#description-of-runtime-and-other-tools-directory-structure)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/build.md" target="_blank"><img src="./_static/logo_source.png"></a>
This chapter introduces how to quickly compile MindSpore Lite, which includes the following modules:
| Module | Support Platform | Description |
| --- | ---- | ---- |
| converter | Linux | Model Conversion Tool |
| runtime | Linux、Android | Model Inference Framework |
| benchmark | Linux、Android | Benchmarking Tool |
| time_profiler | Linux、Android | Performance Analysis Tool |
## Linux Environment Compilation
### Environment Requirements
- The compilation environment supports Linux x86_64 only. Ubuntu 18.04.02 LTS is recommended.
- Compilation dependencies of runtime、benchmark and time_profiler:
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
- [Git](https://git-scm.com/downloads) >= 2.28.0
- Compilation dependencies of converter:
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
- [Git](https://git-scm.com/downloads) >= 2.28.0
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
> - To install and use `Android_NDK`, you need to configure environment variables. The command example is `export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`.
> - In the `build.sh` script, run the `git clone` command to obtain the code in the third-party dependency library. Ensure that the network settings of Git are correct.
### Compilation Options
MindSpore Lite provides a compilation script `build.sh` for one-click compilation, located in the root directory of MindSpore. This script can be used to compile the code of training and inference. The following describes the compilation options of MindSpore Lite.
| Parameter | Parameter Description | Value Range | Mandatory or Not |
| -------- | ----- | ---- | ---- |
| **-I** | **Selects an applicable architecture. This option is required when compile MindSpore Lite.** | **arm64, arm32, or x86_64** | **Yes** |
| -d | If this parameter is set, the debug version is compiled. Otherwise, the release version is compiled. | None | No |
| -i | If this parameter is set, incremental compilation is performed. Otherwise, full compilation is performed. | None | No |
| -j[n] | Sets the number of threads used during compilation. Otherwise, the number of threads is set to 8 by default. | Integer | No |
| -e | In the Arm architecture, select the backend operator and set the `gpu` parameter. The built-in GPU operator of the framework is compiled at the same time. | GPU | No |
| -h | Displays the compilation help information. | None | No |
> When the `-I` parameter changes, such as `-I x86_64` is converted to `-I arm64`, adding `-i` for parameter compilation does not take effect.
### Compilation Example
First, download source code from the MindSpore code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
```
Then, run the following commands in the root directory of the source code to compile MindSpore Lite of different versions:
- Debug version of the x86_64 architecture:
```bash
bash build.sh -I x86_64 -d
```
- Release version of the x86_64 architecture, with the number of threads set:
```bash
bash build.sh -I x86_64 -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the number of threads set:
```bash
bash build.sh -I arm64 -i -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the built-in GPU operator compiled:
```bash
bash build.sh -I arm64 -e gpu
```
### Output Description
After the compilation is complete, go to the `mindspore/output` directory of the source code to view the file generated after compilation. The file is divided into two parts.
- `mindspore-lite-{version}-converter-{os}.tar.gz`:Contains model conversion tool.
- `mindspore-lite-{version}-runtime-{os}-{device}.tar.gz`:Contains model inference framework、benchmarking tool and performance analysis tool.
> version: version of the output, consistent with that of the MindSpore.
>
> device: Currently divided into cpu (built-in CPU operator) and gpu (built-in CPU and GPU operator).
>
> os: Operating system on which the output will be deployed.
Execute the decompression command to obtain the compiled output:
```bash
tar -xvf mindspore-lite-{version}-converter-{os}.tar.gz
tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
```
#### Description of Converter's Directory Structure
The conversion tool is only available under the `-I x86_64` compilation option, and the content includes the following parts:
```
|
├── mindspore-lite-{version}-converter-{os}
│ └── converter # Model conversion Ttool
│ └── third_party # Header files and libraries of third party libraries
│ ├── protobuf # Dynamic library of Protobuf
```
#### Description of Runtime and Other tools' Directory Structure
The inference framework can be obtained under `-I x86_64`, `-I arm64` and `-I arm32` compilation options, and the content includes the following parts:
- When the compilation option is `-I x86_64`:
```
|
├── mindspore-lite-{version}-runtime-x86-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
- When the compilation option is `-I arm64`:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ ├── liboptimize.so # Operator performance optimization library in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
- When the compilation option is `-I arm32`:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
> 1. `liboptimize.so` only exists in the output package of runtime-arm64 and is only used on ARMv8.2 and CPUs that support fp16.
> 2. Compile ARM64 to get the inference framework output of arm64-cpu by default, if you add `-e gpu`, you will get the inference framework output of arm64-gpu, and the package name is `mindspore-lite-{version}-runtime-arm64-gpu.tar.gz`, compiling ARM32 is in the same way.
> 3. Before running the tools in the converter, benchmark or time_profiler directory, you need to configure environment variables, and configure the path where the dynamic libraries of MindSpore Lite and Protobuf are located to the path where the system searches for dynamic libraries. Take the CPU compiled under version 0.7.0-beta as an example: configure converter: `export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib:${LD_LIBRARY_PATH}`; configure benchmark and time_profiler: `export LD_LIBRARY_PATH= ./output/mindspore-lite-0.7.0-runtime-x86-cpu/lib:${LD_LIBRARY_PATH}`.
# Compile
<!-- TOC -->
- [compilation](#compilation)
- [Environment Requirements](#environment-requirements)
- [Compilation Options](#compilation-options)
- [Output Description](#output-description)
- [Compilation Example](#compilation-example)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/compile.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes how to quickly install MindSpore Lite on the Ubuntu system.
## Environment Requirements
- The compilation environment supports Linux x86_64 only. Ubuntu 18.04.02 LTS is recommended.
- Compilation dependencies (basics):
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
> - `Android_NDK` needs to be installed only when the Arm version is compiled. Skip this dependency when the x86_64 version is compiled.
> - To install and use `Android_NDK`, you need to configure environment variables. The command example is `export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`.
- Compilation dependencies (additional dependencies required by the MindSpore Lite model conversion tool, which is required only for compilation of the x86_64 version)
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
## Compilation Options
MindSpore Lite provides multiple compilation options. You can select different compilation options as required.
| Parameter | Parameter Description | Value Range | Mandatory or Not |
| -------- | ----- | ---- | ---- |
| -d | If this parameter is set, the debug version is compiled. Otherwise, the release version is compiled. | - | No |
| -i | If this parameter is set, incremental compilation is performed. Otherwise, full compilation is performed. | - | No |
| -j[n] | Sets the number of threads used during compilation. Otherwise, the number of threads is set to 8 by default. | - | No |
| -I | Selects an applicable architecture. | arm64, arm32, or x86_64 | Yes |
| -e | In the Arm architecture, select the backend operator and set the `gpu` parameter. The built-in GPU operator of the framework is compiled at the same time. | GPU | No |
| -h | Displays the compilation help information. | - | No |
> When the `-I` parameter changes, that is, the applicable architecture is changed, the `-i` parameter cannot be used for incremental compilation.
## Output Description
After the compilation is complete, go to the `mindspore/output` directory of the source code to view the file generated after compilation. The file is named `mindspore-lite-{version}-{function}-{OS}.tar.gz`. After decompression, the tool package named `mindspore-lite-{version}-{function}-{OS}` can be obtained.
> version: version of the output, consistent with that of the MindSpore.
>
> function: function of the output. `converter` indicates the output of the conversion tool and `runtime` indicates the output of the inference framework.
>
> OS: OS on which the output will be deployed.
```bash
tar -xvf mindspore-lite-{version}-{function}-{OS}.tar.gz
```
For the x86 architecture, you can obtain the output of the conversion tool and inference framework;But for the ARM architecture, you only get inference framework.
Generally, the compiled output files include the following types. The architecture selection affects the types of output files.
> For the Arm 64-bit architecture, you can obtain the output of the `arm64-cpu` inference framework. If `-e gpu` is added, you can obtain the output of the `arm64-gpu` inference framework. The compilation for arm 64-bit is the same as that for arm 32-bit.
| Directory | Description | converter | runtime |
| --- | --- | --- | --- |
| include | Inference framework header file | No | Yes |
| lib | Inference framework dynamic library | No | Yes |
| benchmark | Benchmark test tool | No | Yes |
| time_profiler | Time consumption analysis tool at the model network layer| No | Yes |
| converter | Model conversion tool | Yes | No | No |
| third_party | Header file and library of the third-party library | Yes | Yes |
Take the 0.7.0-beta version and CPU as an example. The contents of `third party` and `lib` vary depending on the architecture as follows:
- `mindspore-lite-0.7.0-converter-ubuntu`: `third party`include `protobuf` (Protobuf dynamic library).
- `mindspore-lite-0.7.0-runtime-x86-cpu`: `third party`include `flatbuffers` (FlatBuffers header file), `lib`include`libmindspore-lite.so`(Dynamic library of MindSpore Lite inference framework).
- `mindspore-lite-0.7.0-runtime-arm64-cpu`: `third party`include `flatbuffers` (FlatBuffers header file), `lib`include`libmindspore-lite.so`(Dynamic library of MindSpore Lite inference framework) and `liboptimize.so`(Dynamic library of MindSpore Lite advanced operators).
> `liboptimize.so` only exits in runtime-arm64 outputs, and only can be used in the CPU which supports armv8.2 and fp16.
> Before running the tools in the `converter`, `benchmark`, or `time_profiler` directory, you need to configure environment variables and set the paths of the dynamic libraries of MindSpore Lite and Protobuf to the paths of the system dynamic libraries. The following uses the 0.7.0-beta version as an example: `export LD_LIBRARY_PATH=./mindspore-lite-0.7.0/lib:./mindspore-lite-0.7.0/third_party/protobuf/lib:${LD_LIBRARY_PATH}`.
## Compilation Example
First, download source code from the MindSpore code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
```
Then, run the following commands in the root directory of the source code to compile MindSpore Lite of different versions:
- Debug version of the x86_64 architecture:
```bash
bash build.sh -I x86_64 -d
```
- Release version of the x86_64 architecture, with the number of threads set:
```bash
bash build.sh -I x86_64 -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the number of threads set:
```bash
bash build.sh -I arm64 -i -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the built-in GPU operator compiled:
```bash
bash build.sh -I arm64 -e gpu
```
> - In the `build.sh` script, run the `git clone` command to obtain the code in the third-party dependency library. Ensure that the network settings of Git are correct.
Take the 0.7.0-beta version as an example. After the release version of the x86_64 architecture is compiled, go to the `mindspore/output` directory and run the following decompression command to obtain the output files `include`, `lib`, `benchmark`, `time_profiler`, `converter`, and `third_party`:
```bash
tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
```
......@@ -11,7 +11,7 @@ MindSpore Lite Tutorials
:maxdepth: 1
:caption: Quick Start
compile
build
quick_start/quick_start
.. toctree::
......
......@@ -16,22 +16,22 @@
## Overview
The Benchmark tool is used to perform benchmark testing on a MindSpore Lite model and is implemented using the C++ language. It can not only perform quantitative analysis (performance) on the forward inference execution duration of a MindSpore Lite model, but also perform comparative error analysis (accuracy) based on the output of the specified model.
The Benchmark tool is used to perform benchmark testing on a MindSpore Lite model. It can not only perform quantitative analysis (performance) on the forward inference execution duration of a MindSpore Lite model, but also perform comparative error analysis (accuracy) based on the output of the specified model.
## Environment Preparation
To use the Benchmark tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/master/deploy.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/master/deploy.html#id5) in the compilation document.
- Compilation: Install build dependencies and perform build. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements](https://www.mindspore.cn/lite/tutorial/en/master/build.html#environment-requirements) and [Compilation Example](https://www.mindspore.cn/lite/tutorial/en/master/build.html#compilation-example) in the build document.
- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id4) in the compilation document.
- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description](https://www.mindspore.cn/lite/tutorial/en/master/build.html#output-description) in the build document.
## Parameter Description
The command used for benchmark testing based on the compiled Benchmark tool is as follows:
```bash
./benchmark --modelPath=<MODELPATH> [--accuracyThreshold=<ACCURACYTHRESHOLD>]
./benchmark [--modelPath=<MODELPATH>] [--accuracyThreshold=<ACCURACYTHRESHOLD>]
[--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>]
[--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>]
[--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>]
......@@ -50,12 +50,9 @@ The following describes the parameters in detail.
| `--cpuBindMode=<CPUBINDMODE>` | Optional | Specifies the type of the CPU core bound to the model inference program. | Integer | 1 | −1: medium core<br/>1: large core<br/>0: not bound |
| `--device=<DEVICE>` | Optional | Specifies the type of the device on which the model inference program runs. | String | CPU | CPU or GPU |
| `--help` | Optional | Displays the help information about the `benchmark` command. | - | - | - |
| `--inDataPath=<INDATAPATH>` | Optional | Specifies the file path of the input data of the tested model. If this parameter is not set, a random value will be used. | String | Null | - |
| `--inDataType=<INDATATYPE>` | Optional | Specifies the file type of the input data of the tested model. | String | Bin | Img: The input data is an image. Bin: The input data is a binary file.|
| `--inDataPath=<INDATAPATH>` | Optional | Specifies the file path of the input data of the tested model. If this parameter is not set, a random value will be used. | String | Null | - |
| `--loopCount=<LOOPCOUNT>` | Optional | Specifies the number of forward inference times of the tested model when the Benchmark tool is used for the benchmark testing. The value is a positive integer. | Integer | 10 | - |
| `--numThreads=<NUMTHREADS>` | Optional | Specifies the number of threads for running the model inference program. | Integer | 2 | - |
| `--omModelPath=<OMMODELPATH>` | Optional | Specifies the file path of the OM model. This parameter is optional only when the `device` type is NPU. | String | Null | - |
| `--resizeDims=<RESIZEDIMS>` | Optional | Specifies the size to be adjusted for the input data of the tested model. | String | Null | - |
| `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | Optional | Specifies the number of preheating inference times of the tested model before multiple rounds of the benchmark test are executed. | Integer | 3 | - |
| `--fp16Priority=<FP16PIORITY>` | Optional | Specifies whether the float16 operator is preferred. | Bool | false | true, false |
......
......@@ -4,9 +4,10 @@
- [Model Conversion Tool](#model-conversion-tool)
- [Overview](#overview)
- [Environment Preparation](#environment-preparation)
- [Parameter Description](#parameter-description)
- [Example](#example)
- [Linux Environment Instructions](#linux-environment-instructions)
- [Environment Preparation](#environment-preparation)
- [Parameter Description](#parameter-description)
- [Example](#example)
<!-- /TOC -->
......@@ -18,15 +19,17 @@ MindSpore Lite provides a tool for offline model conversion. It supports convers
Currently, the following input formats are supported: MindSpore, TensorFlow Lite, Caffe, and ONNX.
## Environment Preparation
## Linux Environment Instructions
### Environment Preparation
To use the MindSpore Lite model conversion tool, you need to prepare the environment as follows:
- Compilation: Install basic and additional compilation dependencies and perform compilation. The compilation version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id5) in the compilation document.
- Compilation: Install basic and additional build dependencies and perform build. The build version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/tutorial/en/master/build.html#environment-requirements) and [Compilation Example] (https://www.mindspore.cn/lite/tutorial/en/master/build.html#compilation-example) in the build document.
- Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id4) in the compilation document.
- Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/tutorial/en/master/build.html#output-description) in the build document.
## Parameter Description
### Parameter Description
You can use `./converter_lite ` to complete the conversion. In addition, you can set multiple parameters as required.
You can enter `./converter_lite --help` to obtain help information in real time.
......@@ -51,7 +54,7 @@ The following describes the parameters in detail.
> - The Caffe model is divided into two files: model structure `*.prototxt`, corresponding to the `--modelFile` parameter; model weight `*.caffemodel`, corresponding to the `--weightFile` parameter
## Example
### Example
First, in the root directory of the source code, run the following command to perform compilation. For details, see `compile.md`.
```bash
......@@ -96,6 +99,7 @@ The following describes how to use the conversion command by using several commo
```bash
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model --quantType=AwareTraining
```
- TensorFlow Lite aware quantization model `model_quant.tflite` set the input and output data type to be int8
```bash
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model --quantType=AwareTraining --inputInferenceType=INT8 --inferenceType=INT8
......@@ -105,4 +109,73 @@ The following describes how to use the conversion command by using several commo
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
\ No newline at end of file
## Windows Environment Instructions
### Environment Preparation
To use the MindSpore Lite model conversion tool, the following environment preparations are required.
-Compile: The model conversion tool code is in the `mindspore/lite/tools/converter` directory of the MindSpore source code, refer to the [Environment Requirements](https://www.mindspore.cn/lite/tutorials/en) in the deployment document /master/compile.html#id6) and [Compile Example](https://www.mindspore.cn/lite/tutorials/en/master/deploy.html#id8) to compile the Windows version.
-Run: Refer to [Compile Output](https://www.mindspore.cn/lite/tutorials/en/master/compile.html#id9) in the deployment document to obtain the `converter` tool, and set MinGW/ Copy several dependent files (libgcc_s_seh-1.dll, libwinpthread-1.dll, libssp-0.dll, libstdc++-6.dll) in the bin directory to the main directory of the `converter` tool.
### Parameter Description
Reference description Linux environment model conversion tool [parameter description](https://www.mindspore.cn/lite/tutorials/en/master/converter_tool.html#id4)
### Example
First, use the cmd tool to enter the command to compile in the root directory of the source code, refer to `compile.md`.
```bash
call build.bat lite
```
Then, set the log printing level to INFO.
```bash
set MSLOG=INFO
```
Several common examples are selected below to illustrate the use of conversion commands.
-Take Caffe model LeNet as an example to execute the conversion command.
```bash
call converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
```
In this example, because the Caffe model is used, two input files of model structure and model weight are required. Then plus fmk type and output path two parameters which are required, you can successfully execute.
The result is shown as:
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
This means that the Caffe model has been successfully converted to the MindSpore Lite model and the new file `lenet.ms` has been obtained.
- Take MindSpore, TensorFlow Lite, ONNX model format and perceptual quantization model as examples to execute conversion commands.
- MindSpore model `model.mindir`
```bash
call converter_lite --fmk=MS --modelFile=model.mindir --outputFile=model
```
- TensorFlow Lite model`model.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
```
- ONNX model`model.onnx`
```bash
call converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
```
- TensorFlow Lite awaring quant model `model_quant.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining
```
In the above cases, the following conversion success prompt is displayed, and the `model.ms` target file is obtained at the same time.
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
# Runtime
# Runtime User Guide
<!-- TOC -->
- [Runtime User Guide](#runtime-user-guide)
- [Overview](#overview)
- [Reading Models](#reading-models)
- [Session Creation](#session-creation)
- [Creating Contexts](#creating-contexts)
- [Creating Sessions](#creating-sessions-1)
- [Example](#example)
- [Graph Compilation](#graph-compilation)
- [Variable Dimension](#variable-dimension)
- [Example](#example-1)
- [Compiling Graphs](#compiling-graphs)
- [Example](#example-2)
- [Data Input](#data-input)
- [Obtaining Input Tensors](#obtaining-input-tensors)
- [Copying Data](#copying-data)
- [Example](#example-3)
- [Graph Execution](#graph-execution)
- [Executing Sessions](#executing-sessions)
- [Core Binding](#core-binding)
- [Callback Running](#callback-running)
- [Example](#example-4)
- [Obtaining Outputs](#obtaining-outputs)
- [Obtaining Output Tensors](#obtaining-output-tensors)
- [Example](#example-5)
- [Obtaining Version String](#obtaining-version-string)
- [Example](#example-6)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/use/runtime.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
After model conversion using MindSpore Lite, the model inference process needs to be completed in Runtime.
The procedure for using Runtime is shown in the following figure:
![img](../images/side_infer_process.png)
Its components and their functions are described as follows:
- `Model`: model used by MindSpore Lite, which instantiates the list of operator prototypes through image composition or direct network loading.
- `Lite Session`: provides the graph compilation function and calls the graph executor for inference.
- `Scheduler`: operator heterogeneous scheduler. It can select a proper kernel for each operator based on the heterogeneous scheduling policy, construct a kernel list, and split a graph into subgraphs.
- `Executor`: graph executor, which executes the kernel list to dynamically allocate and release tensors.
- `Operator`: operator prototype, including operator attributes and methods for inferring the shape, data type, and format.
- `Kernel`: operator, which provides specific operator implementation and the operator forwarding function.
- `Tensor`: tensor used by MindSpore Lite, which provides functions and APIs for tensor memory operations.
## Reading Models
In MindSpore Lite, a model file is an `.ms` file converted using the model conversion tool. During model inference, the model needs to be loaded from the file system and parsed. Related operations are mainly implemented in the Model component. The Model component holds model data such as weight data and operator attributes.
A model is created based on memory data using the static `Import` method of the Model class. The `Model` instance returned by the function is a pointer, which is created by using `new`. If the pointer is not required, you need to release it by using `delete`.
## Session Creation
When MindSpore Lite is used for inference, sessions are the main entrance of inference. You can compile and execute graphs through sessions.
### Creating Contexts
Contexts save some basic configuration parameters required by sessions to guide graph compilation and execution. The definition of context is as follows:
MindSpore Lite supports heterogeneous inference. The preferred backend for inference is specified by `device_ctx_` in `Context` and is CPU by default. During graph compilation, operator selection and scheduling are performed based on the preferred backend.
MindSpore Lite has a built-in thread pool shared by processes. During inference, `thread_num_` is used to specify the maximum number of threads in the thread pool. The default maximum number is 2. It is recommended that the maximum number be no more than 4. Otherwise, the performance may be affected.
MindSpore Lite supports dynamic memory allocation and release. If `allocator` is not specified, a default `allocator` is generated during inference. You can also use the `Context` method to allow multiple `Context` to share the memory allocator.
### Creating Sessions
Use the `Context` created in the previous step to call the static `CreateSession` method of LiteSession to create `LiteSession`. The `LiteSession` instance returned by the function is a pointer, which is created by using `new`. If the pointer is not required, you need to release it by using `delete`.
### Example
The following sample code demonstrates how to create a `Context` and how to allow two `LiteSession` to share a memory pool.
```cpp
auto context = new (std::nothrow) lite::Context;
if (context == nullptr) {
MS_LOG(ERROR) << "New context failed while running %s", modelName.c_str();
return RET_ERROR;
}
// The preferred backend is GPU, which means, if there is a GPU operator, it will run on the GPU first, otherwise it will run on the CPU.
context->device_ctx_.type = lite::DT_GPU;
// The medium core takes priority in thread and core binding methods. This parameter will work in the BindThread interface. For specific binding effect, see the "Run Graph" section.
context->cpu_bind_mode_ = MID_CPU;
// Configure the number of worker threads in the thread pool to 2, including the main thread.
context->thread_num_ = 2;
// Allocators can be shared across multiple Contexts.
auto *context2 = new Context(context->thread_num_, context->allocator, context->device_ctx_);
context2->cpu_bind_mode_ = context->cpu_bind_mode_;
// Use Context to create Session.
auto session1 = session::LiteSession::CreateSession(context);
// After the LiteSession is created, the Context can be released.
delete (context);
if (session1 == nullptr) {
MS_LOG(ERROR) << "CreateSession failed while running %s", modelName.c_str();
return RET_ERROR;
}
// session1 and session2 can share one memory pool.
auto session2 = session::LiteSession::CreateSession(context2);
delete (context2);
if (session == nullptr) {
MS_LOG(ERROR) << "CreateSession failed while running %s", modelName.c_str();
return RET_ERROR;
}
```
## Graph Compilation
### Variable Dimension
When using MindSpore Lite for inference, after the session creation and graph compilation have been completed, if you need to resize the input shape, you can reset the shape of the input tensor, and then call the session's Resize() interface.
### Example
The following code demonstrates how to resize the input of MindSpore Lite:
```cpp
// Assume we have created a LiteSession instance named session.
auto inputs = session->GetInputs();
std::vector<int> resize_shape = {1, 128, 128, 3};
// Assume the model has only one input,resize input shape to [1, 128, 128, 3]
inputs[0]->set_shape(resize_shape);
session->Resize(inputs);
```
### Compiling Graphs
Before graph execution, call the `CompileGraph` API of the `LiteSession` to compile graphs and further parse the Model instance loaded from the file, mainly for subgraph split and operator selection and scheduling. This process takes a long time. Therefore, it is recommended that `ListSession` achieve multiple executions with one creation and one compilation.
### Example
The following code demonstrates how to compile graph of MindSpore Lite:
```cpp
// Assume we have created a LiteSession instance named session and a Model instance named model before.
// The methods of creating model and session can refer to "Import Model" and "Create Session" two sections.
auto ret = session->CompileGraph(model);
if (ret != RET_OK) {
std::cerr << "CompileGraph failed" << std::endl;
// session and model need to be released by users manually.
delete (session);
delete (model);
return ret;
}
```
## Data Input
### Obtaining Input Tensors
Before graph execution, you need to copy the input data to model input tensors.
MindSpore Lite provides the following methods to obtain model input tensors.
1. Use the `GetInputsByName` method to obtain vectors of the model input tensors that are connected to the model input node based on the node name.
2. Use the `GetInputs` method to directly obtain the vectors of all model input tensors.
### Copying Data
After model input tensors are obtained, you need to enter data into the tensors. Use the `Size` method of `MSTensor` to obtain the size of the data to be entered into tensors, use the `data_type` method to obtain the data type of tensors, and use the `MutableData` method of `MSTensor` to obtain the writable pointer.
### Example
The following sample code shows how to obtain the entire graph input `MSTensor` from `LiteSession` and enter the model input data to `MSTensor`.
```cpp
// Assume we have created a LiteSession instance named session.
auto inputs = session->GetInputs();
// Assume that the model has only one input tensor.
auto in_tensor = inputs.front();
if (in_tensor == nullptr) {
std::cerr << "Input tensor is nullptr" << std::endl;
return -1;
}
// It is omitted that users have read the model input file and generated a section of memory buffer: input_buf, as well as the byte size of input_buf: data_size.
if (in_tensor->Size() != data_size) {
std::cerr << "Input data size is not suit for model input" << std::endl;
return -1;
}
auto *in_data = in_tensor->MutableData();
if (in_data == nullptr) {
std::cerr << "Data of in_tensor is nullptr" << std::endl;
return -1;
}
memcpy(in_data, input_buf, data_size);
// Users need to free input_buf.
// The elements in the inputs are managed by MindSpore Lite so that users do not need to free inputs.
```
Note:
- The data layout in the model input tensors of MindSpore Lite must be NHWC.
- The model input `input_buf` is read from disks. After it is copied to model input tensors, you need to release `input_buf`.
- Vectors returned by using the `GetInputs` and `GetInputsByName` methods do not need to be released by users.
## Graph Execution
### Executing Sessions
After a MindSpore Lite session performs graph compilation, you can use `RunGraph` of `LiteSession` for model inference.
### Core Binding
The built-in thread pool of MindSpore Lite supports core binding and unbinding. By calling the `BindThread` API, you can bind working threads in the thread pool to specified CPU cores for performance analysis. The core binding operation is related to the context specified when `LiteSession` is created. The core binding operation sets the affinity between a thread and CPU based on the core binding policy in the context.
Note that core binding is an affinity operation, which is affected by system scheduling. Therefore, successful binding to the specified CPU core cannot be ensured. After executing the code of core binding, you need to perform the unbinding operation. The following is an example:
```cpp
// Assume we have created a LiteSession instance named session.
session->BindThread(true);
auto ret = session->RunGraph();
if (ret != mindspore::lite::RET_OK) {
std::cerr << "RunGraph failed" << std::endl;
delete session;
return -1;
}
session->BindThread(false);
```
> Core binding parameters can be used to bind big cores first or middle cores first.
> The rule for determining big core or middle core is based on the CPU core frequency instead of CPU architecture. For the CPU architecture where big, middle, and little cores are not distinguished, this rule can be used.
> Big core first indicates that threads in the thread pool are bound to cores according to core frequency. The first thread is bound to the core with the highest frequency, and the second thread is bound to the core with the second highest frequency. This rule also applies to other threads.
> Middle cores are defined based on experience. By default, middle cores are cores with the third and fourth highest frequency. Middle core first indicates that threads are bound to middle cores preferentially. When there are no available middle cores, threads are bound to little cores.
### Callback Running
MindSpore Lite can transfer two `KernelCallBack` function pointers to call back the inference model when calling `RunGraph`. Compared with common graph execution, callback running can obtain extra information during the running process to help developers analyze performance and fix bugs. The extra information includes:
- Name of the running node
- Input and output tensors before inference of the current node
- Input and output tensors after inference of the current node
### Example
The following sample code demonstrates how to use `LiteSession` to compile a graph, defines two callback functions as the before-callback pointer and after-callback pointer, transfers them to the `RunGraph` API for callback inference, and demonstrates the scenario of multiple graph executions with one graph compilation.
```cpp
// Assume we have created a LiteSession instance named session and a Model instance named model before.
// The methods of creating model and session can refer to "Import Model" and "Create Session" two sections.
auto ret = session->CompileGraph(model);
if (ret != RET_OK) {
std::cerr << "CompileGraph failed" << std::endl;
// session and model need to be released by users manually.
delete (session);
delete (model);
return ret;
}
// Copy input data into the input tensor. Users can refer to the "Input Data" section. We uses random data here.
auto inputs = session->GetInputs();
for (auto in_tensor : inputs) {
in_tensor = inputs.front();
if (in_tensor == nullptr) {
std::cerr << "Input tensor is nullptr" << std::endl;
return -1;
}
// When calling the MutableData method, if the data in MSTensor is not allocated, it will be malloced. After allocation, the data in MSTensor can be considered as random data.
(void) in_tensor->MutableData();
}
// Definition of callback function before forwarding operator.
auto before_call_back_ = [&](const std::vector<mindspore::tensor::MSTensor *> &before_inputs,
const std::vector<mindspore::tensor::MSTensor *> &before_outputs,
const session::CallBackParam &call_param) {
std::cout << "Before forwarding " << call_param.name_callback_param << std::endl;
return true;
};
// Definition of callback function after forwarding operator.
auto after_call_back_ = [&](const std::vector<mindspore::tensor::MSTensor *> &after_inputs,
const std::vector<mindspore::tensor::MSTensor *> &after_outputs,
const session::CallBackParam &call_param) {
std::cout << "After forwarding " << call_param.name_callback_param << std::endl;
return true;
};
// Call the callback function when performing the model inference process.
ret = session_->RunGraph(before_call_back_, after_call_back_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run graph failed.";
return RET_ERROR;
}
// CompileGraph would cost much time, a better solution is calling CompileGraph only once and RunGraph much more times.
for (size_t i = 0; i < 10; i++) {
auto ret = session_->RunGraph();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run graph failed.";
return RET_ERROR;
}
}
// session and model needs to be released by users manually.
delete (session);
delete (model);
```
## Obtaining Outputs
### Obtaining Output Tensors
After performing inference, MindSpore Lite can obtain the model inference result.
MindSpore Lite provides the following methods to obtain the model output `MSTensor`.
1. Use the `GetOutputsByName` method to obtain vectors of the model output `MSTensor` that is connected to the model output node based on the node name.
2. Use the `GetOutputMapByNode` method to directly obtain the mapping between the names of all model output nodes and the model output `MSTensor` connected to the nodes.
3. Use the `GetOutputByTensorName` method to obtain the model output `MSTensor` based on the tensor name.
4. Use the `GetOutputMapByTensor` method to directly obtain the mapping between the names of all model output tensors and the model output `MSTensor`.
After model output tensors are obtained, you need to enter data into the tensors. Use the `Size` method of `MSTensor` to obtain the size of the data to be entered into tensors, use the `data_type` method to obtain the data type of `MSTensor`, and use the `MutableData` method of `MSTensor` to obtain the writable pointer.
### Example
The following sample code shows how to obtain the output `MSTensor` from `LiteSession` using the `GetOutputMapByNode` method and print the first ten data or all data records of each output `MSTensor`.
```cpp
// Assume we have created a LiteSession instance named session before.
auto output_map = session->GetOutputMapByNode();
// Assume that the model has only one output node.
auto out_node_iter = output_map.begin();
std::string name = out_node_iter->first;
// Assume that the unique output node has only one output tensor.
auto out_tensor = out_node_iter->second.front();
if (out_tensor == nullptr) {
std::cerr << "Output tensor is nullptr" << std::endl;
return -1;
}
// Assume that the data format of output data is float 32.
if (out_tensor->data_type() != mindspore::TypeId::kNumberTypeFloat32) {
std::cerr << "Output of lenet should in float32" << std::endl;
return -1;
}
auto *out_data = reinterpret_cast<float *>(out_tensor->MutableData());
if (out_data == nullptr) {
std::cerr << "Data of out_tensor is nullptr" << std::endl;
return -1;
}
// Print the first 10 float data or all output data of the output tensor.
std::cout << "Output data: ";
for (size_t i = 0; i < 10 && i < out_tensor->ElementsNum(); i++) {
std::cout << " " << out_data[i];
}
std::cout << std::endl;
// The elements in outputs do not need to be free by users, because outputs are managed by the MindSpore Lite.
```
Note that the vectors or map returned by the `GetOutputsByNodeName`, `GetOutputMapByNode`, `GetOutputByTensorName` and `GetOutputMapByTensor` methods do not need to be released by users.
The following sample code shows how to obtain the output `MSTensor` from `LiteSession` using the `GetOutputsByNodeName` method.
```cpp
// Assume we have created a LiteSession instance named session before.
// Assume that model has a output node named output_node_name_0.
auto output_vec = session->GetOutputsByNodeName("output_node_name_0");
// Assume that output node named output_node_name_0 has only one output tensor.
auto out_tensor = output_vec.front();
if (out_tensor == nullptr) {
std::cerr << "Output tensor is nullptr" << std::endl;
return -1;
}
```
The following sample code shows how to obtain the output `MSTensor` from `LiteSession` using the `GetOutputMapByTensor` method.
```cpp
// Assume we have created a LiteSession instance named session before.
auto output_map = session->GetOutputMapByTensor();
// Assume that output node named output_node_name_0 has only one output tensor.
auto out_tensor = output_vec.front();
if (out_tensor == nullptr) {
std::cerr << "Output tensor is nullptr" << std::endl;
return -1;
}
```
The following sample code shows how to obtain the output `MSTensor` from `LiteSession` using the `GetOutputByTensorName` method.
```cpp
// We can use GetOutputTensorNames method to get all name of output tensor of model which is in order.
auto tensor_names = this->GetOutputTensorNames();
// Assume we have created a LiteSession instance named session before.
// Use output tensor name returned by GetOutputTensorNames as key
for (auto tensor_name : tensor_names) {
auto out_tensor = this->GetOutputByTensorName(tensor_name);
if (out_tensor == nullptr) {
std::cerr << "Output tensor is nullptr" << std::endl;
return -1;
}
}
```
## Obtaining Version String
### Example
The following sample code shows how to obtain version string using `Version` method.
```cpp
#include "include/version.h"
std::string version = mindspore::lite::Version();
```
......@@ -20,9 +20,9 @@ The TimeProfiler tool can be used to analyze the time consumption of forward inf
To use the TimeProfiler tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/master/compile.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/master/compile.html#id5) in the compilation document.
- Compilation: Install build dependencies and perform build. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements](https://www.mindspore.cn/lite/tutorial/en/master/compile.html#environment-requirements) and [Compilation Example](https://www.mindspore.cn/lite/tutorial/en/master/compile.html#compilation-example) in the build document.
- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id4) in the compilation document.
- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/tutorial/en/master/build.html#output-description) in the build document.
## Parameter Description
......
......@@ -9,22 +9,18 @@
- [编译示例](#编译示例)
- [编译输出](#编译输出)
- [模型转换工具converter目录结构说明](#模型转换工具converter目录结构说明)
- [模型推理框架runtime及其他工具目录结构说明](#模型推理框架runtime及其他工具目录结构说明)
- [Windows环境编译](#windows环境编译)
- [环境要求](#环境要求-1)
- [编译选项](#编译选项-1)
- [编译示例](#编译示例-1)
- [模型推理框架runtime及其他工具目录结构说明](#模型推理框架runtime及其他工具目录结构说明)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/compile.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/build.md" target="_blank"><img src="./_static/logo_source.png"></a>
本章节介绍如何在Ubuntu系统上快速编译出MindSpore Lite,其包含的模块如下:
本章节介绍如何快速编译出MindSpore Lite,其包含的模块如下:
| 模块 | 支持平台 | 说明 |
| --- | ---- | ---- |
| converter | Linux、Windows | 模型转换工具 |
| converter | Linux | 模型转换工具 |
| runtime | Linux、Android | 模型推理框架 |
| benchmark | Linux、Android | 基准测试工具 |
| time_profiler | Linux、Android | 性能分析工具 |
......@@ -54,7 +50,8 @@
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
> 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
> - 当安装完依赖项Android_NDK后,需配置环境变量:`export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`。
> - 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
### 编译选项
......@@ -66,7 +63,7 @@ MindSpore Lite提供编译脚本`build.sh`用于一键式编译,位于MindSpor
| -d | 设置该参数,则编译Debug版本,否则编译Release版本 | 无 | 否 |
| -i | 设置该参数,则进行增量编译,否则进行全量编译 | 无 | 否 |
| -j[n] | 设定编译时所用的线程数,否则默认设定为8线程 | Integer | 否 |
| -e | 选择除CPU之外的其他内置算子类型,仅在ARM架构下适用,当前仅支持GPU | gpu | 否 |
| -e | 选择除CPU之外的其他内置算子类型,仅在ARM架构下适用,当前仅支持GPU | GPU | 否 |
| -h | 显示编译帮助信息 | 无 | 否 |
> 在`-I`参数变动时,如`-I x86_64`变为`-I arm64`,添加`-i`参数进行增量编译不生效。
......@@ -146,6 +143,8 @@ tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
│ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
│ └── third_party # 第三方库头文件和库
│ ├── flatbuffers # FlatBuffers头文件
│ └── include # 推理框架头文件
│ └── time_profiler # 模型网络层耗时分析工具
```
......@@ -180,49 +179,4 @@ tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
> 1. `liboptimize.so`仅在runtime-arm64的输出包中存在,仅在ARMv8.2和支持fp16特性的CPU上使用。
> 2. 编译ARM64默认可获得arm64-cpu的推理框架输出件,若添加`-e gpu`则获得arm64-gpu的推理框架输出件,此时包名为`mindspore-lite-{version}-runtime-arm64-gpu.tar.gz`,编译ARM32同理。
> 3. 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本下编译CPU为例:配置converter:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib`;配置benchmark和time_profiler:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0-runtime-x86-cpu/lib`
## Windows环境编译
### 环境要求
- 支持的编译环境为:Windows 10,64位。
- 编译依赖
- [CMake](https://cmake.org/download/) >= 3.14.1
- [MinGW GCC](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z/download) >= 7.3.0
- [Python](https://www.python.org/) >= 3.7.5
- [Git](https://git-scm.com/downloads) >= 2.28.0
> 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
### 编译选项
MindSpore Lite的编译选项如下。
| 参数 | 参数说明 | 是否必选 |
| -------- | ----- | ---- |
| **lite** | **设置该参数,则对Mindspore Lite工程进行编译** | **是** |
| [n] | 设定编译时所用的线程数,否则默认设定为6线程 | 否 |
### 编译示例
首先,使用git工具从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
```
然后,使用cmd工具在源码根目录下,执行如下命令即可编译MindSpore Lite。
- 以默认线程数(6线程)编译Windows版本。
```bash
call build.bat lite
```
- 以指定线程数8编译Windows版本。
```bash
call build.bat lite 8
```
编译完成之后,进入`mindspore/output/`目录,解压后即可获取输出件`mindspore-lite-0.7.0-converter-win-cpu.zip`,其中含有转换工具可执行文件。
> 3. 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本下编译CPU为例:配置converter:`export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib:${LD_LIBRARY_PATH}`;配置benchmark和time_profiler:`export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-runtime-x86-cpu/lib:${LD_LIBRARY_PATH}`
......@@ -11,7 +11,7 @@ MindSpore端侧教程
:maxdepth: 1
:caption: 快速入门
deploy
build
quick_start/quick_start
.. toctree::
......
......@@ -16,22 +16,22 @@
## 概述
Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具,由C++语言编码实现。它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。
Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具。它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。
## 环境准备
使用Benchmark工具,需要进行如下环境准备工作。
- 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id4)执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id4),获得`benchmark`工具,并配置环境变量。
- 运行:参考构建文档中的[编译输出](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id5),获得`benchmark`工具,并配置环境变量。
## 参数说明
使用编译好的Benchmark工具进行模型的基准测试时,其命令格式如下所示。
```bash
./benchmark --modelPath=<MODELPATH> [--accuracyThreshold=<ACCURACYTHRESHOLD>]
./benchmark [--modelPath=<MODELPATH>] [--accuracyThreshold=<ACCURACYTHRESHOLD>]
[--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>]
[--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>]
[--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>]
......@@ -51,11 +51,8 @@ Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具
| `--device=<DEVICE>` | 可选 | 指定模型推理程序运行的设备类型。 | String | CPU | CPU、GPU |
| `--help` | 可选 | 显示`benchmark`命令的帮助信息。 | - | - | - |
| `--inDataPath=<INDATAPATH>` | 可选 | 指定测试模型输入数据的文件路径。如果未设置,则使用随机输入。 | String | null | - |
| `--inDataType=<INDATATYPE>` | 可选 | 指定测试模型输入数据的文件类型。 | String | bin | img:表示输入数据的文件类型为图片<br>bin:表示输入数据的类型为二进制文件 |
| `--loopCount=<LOOPCOUNT>` | 可选 | 指定Benchmark工具进行基准测试时,测试模型的前向推理运行次数,其值为正整数。 | Integer | 10 | - |
| `--numThreads=<NUMTHREADS>` | 可选 | 指定模型推理程序运行的线程数。 | Integer | 2 | - |
| `--omModelPath=<OMMODELPATH>` | 可选 | 指定OM模型的文件路径,此参数仅当`device`类型为NPU时可选设置。 | String | null | - |
| `--resizeDims=<RESIZEDIMS>` | 可选 | 指定测试模型输入数据需要调整的尺寸大小。 | String | null | - |
| `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | 可选 | 指定测试模型在执行基准测试运行轮数前进行的模型预热推理次数。 | Integer | 3 | - |
| `--fp16Priority=<FP16PIORITY>` | 可选 | 指定是否优先使用float16算子。 | Bool | false | true, false |
......
......@@ -8,10 +8,6 @@
- [环境准备](#环境准备)
- [参数说明](#参数说明)
- [使用示例](#使用示例)
- [Windows环境使用说明](#windows环境使用说明)
- [环境准备](#环境准备-1)
- [参数说明](#参数说明-1)
- [使用示例](#使用示例-1)
<!-- /TOC -->
......@@ -29,9 +25,9 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id4)编译x86_64版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id4),获得`converter`工具,并配置环境变量。
- 运行:参考构建文档中的[编译输出](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#output-description),获得`converter`工具,并配置环境变量。
### 参数说明
......@@ -113,75 +109,3 @@ bash build.sh -I x86_64
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
## Windows环境使用说明
### 环境准备
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id7)[编译示例](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id10),安装编译依赖基本项与模型转换工具所需附加项,并编译Windows版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id9),获得`converter`工具,并将MinGW/bin目录下的几个依赖文件(libgcc_s_seh-1.dll、libwinpthread-1.dll、libssp-0.dll、libstdc++-6.dll)拷贝至`converter`工具的主目录。
### 参数说明
参考Linux环境模型转换工具的[参数说明](https://www.mindspore.cn/lite/docs/zh-CN/master/converter_tool.html#id4)
### 使用示例
首先,使用cmd工具在源码根目录下,输入命令进行编译,可参考`compile.md`
```bash
call build.bat lite
```
然后,设置日志打印级别为INFO。
```bash
set MSLOG=INFO
```
下面选取了几个常用示例,说明转换命令的使用方法。
- 以Caffe模型LeNet为例,执行转换命令。
```bash
call converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
```
本例中,因为采用了Caffe模型,所以需要模型结构、模型权值两个输入文件。再加上其他必需的fmk类型和输出路径两个参数,即可成功执行。
结果显示为:
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
这表示已经成功将Caffe模型转化为MindSpore Lite模型,获得新文件`lenet.ms`
- 以MindSpore、TensorFlow Lite、ONNX模型格式和感知量化模型为例,执行转换命令。
- MindSpore模型`model.mindir`
```bash
call converter_lite --fmk=MS --modelFile=model.mindir --outputFile=model
```
- TensorFlow Lite模型`model.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
```
- ONNX模型`model.onnx`
```bash
call converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
```
- TensorFlow Lite感知量化模型`model_quant.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining
```
以上几种情况下,均显示如下转换成功提示,且同时获得`model.ms`目标文件。
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
......@@ -13,20 +13,21 @@
- [可变维度](#可变维度)
- [使用示例](#使用示例-1)
- [图编译](#图编译-1)
- [使用示例](#使用示例-2)
- [输入数据](#输入数据)
- [获取输入Tensor](#获取输入tensor)
- [数据拷贝](#数据拷贝)
- [使用示例](#使用示例-2)
- [使用示例](#使用示例-3)
- [图执行](#图执行)
- [执行会话](#执行会话)
- [绑核](#绑核)
- [回调运行](#回调运行)
- [使用示例](#使用示例-3)
- [使用示例](#使用示例-4)
- [获取输出](#获取输出)
- [获取输出Tensor](#获取输出tensor)
- [使用示例](#使用示例-4)
- [获取版本号](#获取版本号)
- [使用示例](#使用示例-5)
- [获取版本号](#获取版本号)
- [使用示例](#使用示例-6)
<!-- /TOC -->
......@@ -119,7 +120,7 @@ if (session == nullptr) {
### 使用示例
下面代码演示如何对MindSpore Lite的输入进行Resize()
下面代码演示如何对MindSpore Lite的输入进行Resize:
```cpp
// Assume we have created a LiteSession instance named session.
auto inputs = session->GetInputs();
......@@ -133,6 +134,22 @@ session->Resize(inputs);
在图执行前,需要调用`LiteSession``CompileGraph`接口进行图编译,进一步解析从文件中加载的Model实例,主要进行子图切分、算子选型调度。这部分会耗费较多时间,所以建议`ListSession`创建一次,编译一次,多次执行。
### 使用示例
下面代码演示如何进行图编译:
```cpp
// Assume we have created a LiteSession instance named session and a Model instance named model before.
// The methods of creating model and session can refer to "Import Model" and "Create Session" two sections.
auto ret = session->CompileGraph(model);
if (ret != RET_OK) {
std::cerr << "CompileGraph failed" << std::endl;
// session and model need to be released by users manually.
delete (session);
delete (model);
return ret;
}
```
## 输入数据
### 获取输入Tensor
......@@ -318,7 +335,7 @@ if (out_data == nullptr) {
}
// Print the first 10 float data or all output data of the output tensor.
std::cout << "Output data: ";
for (size_t i = 0; i < 10 & i < out_tensor->ElementsNum(); i++) {
for (size_t i = 0; i < 10 && i < out_tensor->ElementsNum(); i++) {
std::cout << " " << out_data[i];
}
std::cout << std::endl;
......
......@@ -20,9 +20,9 @@ TimeProfiler工具可以对MindSpore Lite模型网络层的前向推理进行耗
使用TimeProfiler工具,需要进行如下环境准备工作。
- 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id4)执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id4),获得`time_profiler`工具,并配置环境变量。
- 运行:参考部署文档中的[输出输出](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html#id4),获得`time_profiler`工具,并配置环境变量。
## 参数说明
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册