Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
course
提交
e466caf5
C
course
项目概览
MindSpore
/
course
通知
4
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
C
course
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e466caf5
编写于
6月 03, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 03, 2020
浏览文件
操作
浏览文件
下载
差异文件
!4 use model_zoo.lenet in experiment_1
Merge pull request !4 from dyonghan/experiment_1
上级
90d94759
0edad40f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
18 addition
and
65 deletion
+18
-65
experiment_1/1-LeNet5_MNIST.ipynb
experiment_1/1-LeNet5_MNIST.ipynb
+16
-38
experiment_1/main.py
experiment_1/main.py
+2
-27
未找到文件。
experiment_1/1-LeNet5_MNIST.ipynb
浏览文件 @
e466caf5
...
...
@@ -20,7 +20,7 @@
"\n",
"- 熟练使用Python,了解Shell及Linux操作系统基本知识。\n",
"- 具备一定的深度学习理论知识,如卷积神经网络、损失函数、优化器,训练策略等。\n",
"- 了解华为云的基本使用方法,包括[OBS(对象存储)](https://www.huaweicloud.com/product/obs.html)、[ModelArts(AI开发平台)](https://www.huaweicloud.com/product/modelarts.html)、[Notebook(开发工具)](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0033.html)、[训练作业](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0046.html)等
功能
。华为云官网:https://www.huaweicloud.com\n",
"- 了解华为云的基本使用方法,包括[OBS(对象存储)](https://www.huaweicloud.com/product/obs.html)、[ModelArts(AI开发平台)](https://www.huaweicloud.com/product/modelarts.html)、[Notebook(开发工具)](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0033.html)、[训练作业](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0046.html)等
服务
。华为云官网:https://www.huaweicloud.com\n",
"- 了解并熟悉MindSpore AI计算框架,MindSpore官网:https://www.mindspore.cn\n",
"\n",
"## 实验环境\n",
...
...
@@ -76,7 +76,8 @@
"│ └── train\n",
"│ ├── train-images-idx3-ubyte\n",
"│ └── train-labels-idx1-ubyte\n",
"└── 脚本等文件\n",
"├── *.ipynb\n",
"└── main.py\n",
"```\n",
"\n",
"## 实验步骤(方案一)\n",
...
...
@@ -122,6 +123,7 @@
"import mindspore.dataset.transforms.vision.c_transforms as CV\n",
"\n",
"from mindspore import nn\n",
"from mindspore.model_zoo.lenet import LeNet5\n",
"from mindspore.train import Model\n",
"from mindspore.train.callback import LossMonitor\n",
"\n",
...
...
@@ -149,6 +151,7 @@
"def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),\n",
" rescale=1/(255*0.3081), shift=-0.1307/0.3081, buffer_size=64):\n",
" ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)\n",
" \n",
" ds = ds.map(input_columns=\"image\", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])\n",
" ds = ds.map(input_columns=\"label\", operations=C.TypeCast(ms.int32))\n",
" ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)\n",
...
...
@@ -201,53 +204,20 @@
"source": [
"### 定义模型\n",
"\n",
"MindSpore model_zoo中提供了
现成的LeNet5模型,但当前ModelArts平台上暂未集成该模块。
模型结构如下图所示:\n",
"MindSpore model_zoo中提供了
多种常见的模型,可以直接使用。这里使用其中的LeNet5模型,
模型结构如下图所示:\n",
"\n",
"<img src=\"https://www.mindspore.cn/tutorial/zh-CN/master/_images/LeNet_5.jpg\">\n",
"\n",
"[1] 图片来源于http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class LeNet5(nn.Cell):\n",
" def __init__(self):\n",
" super(LeNet5, self).__init__()\n",
" self.relu = nn.ReLU()\n",
" self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')\n",
" self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')\n",
" self.pool = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" self.flatten = nn.Flatten()\n",
" self.fc1 = nn.Dense(400, 120)\n",
" self.fc2 = nn.Dense(120, 84)\n",
" self.fc3 = nn.Dense(84, 10)\n",
" \n",
" def construct(self, input_x):\n",
" output = self.conv1(input_x)\n",
" output = self.relu(output)\n",
" output = self.pool(output)\n",
" output = self.conv2(output)\n",
" output = self.relu(output)\n",
" output = self.pool(output)\n",
" output = self.flatten(output)\n",
" output = self.fc1(output)\n",
" output = self.fc2(output)\n",
" output = self.fc3(output)\n",
" \n",
" return output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 训练\n",
"\n",
"使用MNIST数据集对上述定义的LeNet模型进行训练。训练策略如下表所示,可以调整训练策略并查看训练效果,要求验证精度大于95%。\n",
"使用MNIST数据集对上述定义的LeNet
5
模型进行训练。训练策略如下表所示,可以调整训练策略并查看训练效果,要求验证精度大于95%。\n",
"\n",
"| batch size | number of epochs | learning rate | optimizer |\n",
"| -- | -- | -- | -- |\n",
...
...
@@ -292,6 +262,14 @@
"source": [
"## 实验步骤(方案二)\n",
"\n",
"除了Notebook,ModelArts还提供了训练作业服务。相比Notebook,训练作业资源池更大,且具有作业排队等功能,适合大规模并发使用。使用训练作业时,也会有修改代码和调试的需求,有如下三个方案:\n",
"\n",
"1. 在本地修改代码后重新上传;\n",
"\n",
"2. 使用[PyCharm ToolKit](https://support.huaweicloud.com/tg-modelarts/modelarts_15_0001.html)配置一个本地Pycharm+ModelArts的开发环境,便于上传代码、提交训练作业和获取训练日志。\n",
"\n",
"3. 在ModelArts上创建Notebook,然后设置[Sync OBS功能](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0038.html),可以在线修改代码并自动同步到OBS中。因为只用Notebook来编辑代码,所以创建CPU类型最低规格的Notebook就行。\n",
"\n",
"### 代码梳理\n",
"\n",
"创建训练作业时,运行参数会通过脚本传参的方式输入给脚本代码,脚本必须解析传参才能在代码中使用相应参数。如data_url和train_url,分别对应数据存储路径(OBS路径)和训练输出路径(OBS路径)。脚本对传参进行解析后赋值到`args`变量里,在后续代码里可以使用。\n",
...
...
@@ -351,7 +329,7 @@
"source": [
"## 实验小结\n",
"\n",
"本实验展示了如何使用MindSpore进行手写数字识别,以及开发
、训练和使用LeNet模型。通过对LeNet模型做几代的训练,然后使用训练后的LeNet模型对手写数字进行识别,识别准确率大于95%。即LeNet
学习到了如何进行手写数字识别。"
"本实验展示了如何使用MindSpore进行手写数字识别,以及开发
和训练LeNet5模型。通过对LeNet5模型做几代的训练,然后使用训练后的LeNet5模型对手写数字进行识别,识别准确率大于95%。即LeNet5
学习到了如何进行手写数字识别。"
]
}
],
...
...
experiment_1/main.py
浏览文件 @
e466caf5
...
...
@@ -9,6 +9,7 @@ import mindspore.dataset.transforms.c_transforms as C
import
mindspore.dataset.transforms.vision.c_transforms
as
CV
from
mindspore
import
nn
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore.train
import
Model
from
mindspore.train.callback
import
LossMonitor
...
...
@@ -21,6 +22,7 @@ DATA_DIR_TEST = "MNIST/test" # 测试集信息
def
create_dataset
(
training
=
True
,
num_epoch
=
1
,
batch_size
=
32
,
resize
=
(
32
,
32
),
rescale
=
1
/
(
255
*
0.3081
),
shift
=-
0.1307
/
0.3081
,
buffer_size
=
64
):
ds
=
ms
.
dataset
.
MnistDataset
(
DATA_DIR_TRAIN
if
training
else
DATA_DIR_TEST
)
ds
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
[
CV
.
Resize
(
resize
),
CV
.
Rescale
(
rescale
,
shift
),
CV
.
HWC2CHW
()])
ds
=
ds
.
map
(
input_columns
=
"label"
,
operations
=
C
.
TypeCast
(
ms
.
int32
))
ds
=
ds
.
shuffle
(
buffer_size
=
buffer_size
).
batch
(
batch_size
,
drop_remainder
=
True
).
repeat
(
num_epoch
)
...
...
@@ -28,33 +30,6 @@ def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
return
ds
class
LeNet5
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
LeNet5
,
self
).
__init__
()
self
.
relu
=
nn
.
ReLU
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
5
,
stride
=
1
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
stride
=
1
,
pad_mode
=
'valid'
)
self
.
pool
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
nn
.
Flatten
()
self
.
fc1
=
nn
.
Dense
(
400
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
def
construct
(
self
,
input_x
):
output
=
self
.
conv1
(
input_x
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
conv2
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
flatten
(
output
)
output
=
self
.
fc1
(
output
)
output
=
self
.
fc2
(
output
)
output
=
self
.
fc3
(
output
)
return
output
def
test_train
(
lr
=
0.01
,
momentum
=
0.9
,
num_epoch
=
3
,
ckpt_name
=
"a_lenet"
):
ds_train
=
create_dataset
(
num_epoch
=
num_epoch
)
ds_eval
=
create_dataset
(
training
=
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录