main.py 14.3 KB
Newer Older
Z
zhengnengjin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
import os
import shutil
import math
import argparse
import json
from itertools import chain
import numpy as np
from config import lstm_cfg as cfg

import mindspore.nn as nn
import mindspore.context as context
import mindspore.dataset as ds
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.mindrecord import FileWriter
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
# Install gensim with 'pip install gensim'
import gensim

class ImdbParser():
    """
    parse aclImdb data to features and labels.
    sentence->tokenized->encoded->padding->features
    """

    def __init__(self, imdb_path, glove_path, embed_size=300):
        self.__segs = ['train', 'test']
        self.__label_dic = {'pos': 1, 'neg': 0}
        self.__imdb_path = imdb_path
        self.__glove_dim = embed_size
        self.__glove_file = os.path.join(glove_path, 'glove.6B.' + str(self.__glove_dim) + 'd.txt')

        # properties
        self.__imdb_datas = {}
        self.__features = {}
        self.__labels = {}
        self.__vacab = {}
        self.__word2idx = {}
        self.__weight_np = {}
        self.__wvmodel = None

    def parse(self):
        """
        parse imdb data to memory
        """
        self.__wvmodel = gensim.models.KeyedVectors.load_word2vec_format(self.__glove_file)

        for seg in self.__segs:
            self.__parse_imdb_datas(seg)
            self.__parse_features_and_labels(seg)
            self.__gen_weight_np(seg)

    def __parse_imdb_datas(self, seg):
        """
        load data from txt
        """
        data_lists = []
        for label_name, label_id in self.__label_dic.items():
            sentence_dir = os.path.join(self.__imdb_path, seg, label_name)
            for file in os.listdir(sentence_dir):
                with open(os.path.join(sentence_dir, file), mode='r', encoding='utf8') as f:
                    sentence = f.read().replace('\n', '')
                    data_lists.append([sentence, label_id])
        self.__imdb_datas[seg] = data_lists

    def __parse_features_and_labels(self, seg):
        """
        parse features and labels
        """
        features = []
        labels = []
        for sentence, label in self.__imdb_datas[seg]:
            features.append(sentence)
            labels.append(label)

        self.__features[seg] = features
        self.__labels[seg] = labels

        # update feature to tokenized
        self.__updata_features_to_tokenized(seg)
        # parse vacab
        self.__parse_vacab(seg)
        # encode feature
        self.__encode_features(seg)
        # padding feature
        self.__padding_features(seg)

    def __updata_features_to_tokenized(self, seg):
        tokenized_features = []
        for sentence in self.__features[seg]:
            tokenized_sentence = [word.lower() for word in sentence.split(" ")]
            tokenized_features.append(tokenized_sentence)
        self.__features[seg] = tokenized_features

    def __parse_vacab(self, seg):
        # vocab
        tokenized_features = self.__features[seg]
        vocab = set(chain(*tokenized_features))
        self.__vacab[seg] = vocab

        # word_to_idx: {'hello': 1, 'world':111, ... '<unk>': 0}
        word_to_idx = {word: i + 1 for i, word in enumerate(vocab)}
        word_to_idx['<unk>'] = 0
        self.__word2idx[seg] = word_to_idx

    def __encode_features(self, seg):
        """ encode word to index """
        word_to_idx = self.__word2idx['train']
        encoded_features = []
        for tokenized_sentence in self.__features[seg]:
            encoded_sentence = []
            for word in tokenized_sentence:
                encoded_sentence.append(word_to_idx.get(word, 0))
            encoded_features.append(encoded_sentence)
        self.__features[seg] = encoded_features

    def __padding_features(self, seg, maxlen=500, pad=0):
        """ pad all features to the same length """
        padded_features = []
        for feature in self.__features[seg]:
            if len(feature) >= maxlen:
                padded_feature = feature[:maxlen]
            else:
                padded_feature = feature
                while len(padded_feature) < maxlen:
                    padded_feature.append(pad)
            padded_features.append(padded_feature)
        self.__features[seg] = padded_features

    def __gen_weight_np(self, seg):
        """
        generate weight by gensim
        """
        weight_np = np.zeros((len(self.__word2idx[seg]), self.__glove_dim), dtype=np.float32)
        for word, idx in self.__word2idx[seg].items():
            if word not in self.__wvmodel:
                continue
            word_vector = self.__wvmodel.get_vector(word)
            weight_np[idx, :] = word_vector

        self.__weight_np[seg] = weight_np

    def get_datas(self, seg):
        """
        return features, labels, and weight
        """
        features = np.array(self.__features[seg]).astype(np.int32)
        labels = np.array(self.__labels[seg]).astype(np.int32)
        weight = np.array(self.__weight_np[seg])
        return features, labels, weight

def _convert_to_mindrecord(data_home, features, labels, weight_np=None, training=True):
    """
    convert imdb dataset to mindrecoed dataset
    """
    if weight_np is not None:
        np.savetxt(os.path.join(data_home, 'weight.txt'), weight_np)

    # write mindrecord
    schema_json = {"id": {"type": "int32"},
                   "label": {"type": "int32"},
                   "feature": {"type": "int32", "shape": [-1]}}

    data_dir = os.path.join(data_home, "aclImdb_train.mindrecord")
    if not training:
        data_dir = os.path.join(data_home, "aclImdb_test.mindrecord")

    def get_imdb_data(features, labels):
        data_list = []
        for i, (label, feature) in enumerate(zip(labels, features)):
            data_json = {"id": i,
                         "label": int(label),
                         "feature": feature.reshape(-1)}
            data_list.append(data_json)
        return data_list

    writer = FileWriter(data_dir, shard_num=4)
    data = get_imdb_data(features, labels)
    writer.add_schema(schema_json, "nlp_schema")
    writer.add_index(["id", "label"])
    writer.write_raw_data(data)
    writer.commit()

def convert_to_mindrecord(embed_size, aclimdb_path, preprocess_path, glove_path):
    """
    convert imdb dataset to mindrecoed dataset
    """
    parser = ImdbParser(aclimdb_path, glove_path, embed_size)
    parser.parse()

    if not os.path.exists(preprocess_path):
        print(f"preprocess path {preprocess_path} is not exist")
        os.makedirs(preprocess_path)

    train_features, train_labels, train_weight_np = parser.get_datas('train')
    _convert_to_mindrecord(preprocess_path, train_features, train_labels, train_weight_np)

    test_features, test_labels, _ = parser.get_datas('test')
    _convert_to_mindrecord(preprocess_path, test_features, test_labels, training=False)

def lstm_create_dataset(data_home, batch_size, repeat_num=1, training=True):
    """Data operations."""
    ds.config.set_seed(1)
    data_dir = os.path.join(data_home, "aclImdb_train.mindrecord0")
    if not training:
        data_dir = os.path.join(data_home, "aclImdb_test.mindrecord0")

    data_set = ds.MindDataset(data_dir, columns_list=["feature", "label"], num_parallel_workers=4)

    # apply map operations on images
    data_set = data_set.shuffle(buffer_size=data_set.get_dataset_size())
    data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
    data_set = data_set.repeat(count=repeat_num)

    return data_set

# Initialize short-term memory (h) and long-term memory (c) to 0
def lstm_default_state(batch_size, hidden_size, num_layers, bidirectional):
    """init default input."""
    num_directions = 1
    if bidirectional:
        num_directions = 2

    if context.get_context("device_target") == "CPU":
        h_list = []
        c_list = []
        i = 0
        while i < num_layers:
            hi = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
            h_list.append(hi)
            ci = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
            c_list.append(ci)
            i = i + 1
        h = tuple(h_list)
        c = tuple(c_list)
        return h, c

    h = Tensor(
        np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
    c = Tensor(
        np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
    return h, c

class SentimentNet(nn.Cell):
    """Sentiment network structure."""

    def __init__(self,
                 vocab_size,
                 embed_size,
                 num_hiddens,
                 num_layers,
                 bidirectional,
                 num_classes,
                 weight,
                 batch_size):
        super(SentimentNet, self).__init__()
        # Mapp words to vectors
        self.embedding = nn.Embedding(vocab_size,
                                      embed_size,
                                      embedding_table=weight)
        self.embedding.embedding_table.requires_grad = False
        self.trans = P.Transpose()
        self.perm = (1, 0, 2)
        self.encoder = nn.LSTM(input_size=embed_size,
                               hidden_size=num_hiddens,
                               num_layers=num_layers,
                               has_bias=True,
                               bidirectional=bidirectional,
                               dropout=0.0)

        self.h, self.c = lstm_default_state(batch_size, num_hiddens, num_layers, bidirectional)

        self.concat = P.Concat(1)
        if bidirectional:
            self.decoder = nn.Dense(num_hiddens * 4, num_classes)
        else:
            self.decoder = nn.Dense(num_hiddens * 2, num_classes)

    def construct(self, inputs):
        # input:(64,500,300)
        embeddings = self.embedding(inputs)
        embeddings = self.trans(embeddings, self.perm)
        output, _ = self.encoder(embeddings, (self.h, self.c))
        # states[i] size(64,200)  -> encoding.size(64,400)
        encoding = self.concat((output[0], output[499]))
        outputs = self.decoder(encoding)
        return outputs


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
    parser.add_argument('--preprocess', type=str, default='true', choices=['true', 'false'],
                        help='whether to preprocess data.')
    parser.add_argument('--aclimdb_path', type=str, default="./aclImdb",
                        help='path where the dataset is stored.')
    parser.add_argument('--glove_path', type=str, default="./glove",
                        help='path where the GloVe is stored.')
    parser.add_argument('--preprocess_path', type=str, default="./preprocess",
                        help='path where the pre-process data is stored.')
    parser.add_argument('--ckpt_path', type=str, default="./",
                        help='the path to save the checkpoint file.')
    parser.add_argument('--pre_trained', type=str, default=None,
                        help='the pretrained checkpoint file path.')
    parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
                        help='the target device to run, support "GPU", "CPU". Default: "GPU".')
    args = parser.parse_args(['--device_target', 'CPU', '--preprocess', 'true'])

    context.set_context(
        mode=context.GRAPH_MODE,
        save_graphs=False,
        device_target=args.device_target)

    if args.preprocess == "true":
        print("============== Starting Data Pre-processing ==============")
        convert_to_mindrecord(cfg.embed_size, args.aclimdb_path, args.preprocess_path, args.glove_path)
        print("======================= Successful =======================")

    ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size)

    iterator = ds_train.create_dict_iterator().get_next()
    first_batch_label = iterator["label"]
    first_batch_first_feature = iterator["feature"][0]
    print(f"The first batch contains label below:\n{first_batch_label}\n")
    print(f"The feature of the first item in the first batch is below vector:\n{first_batch_first_feature}")

    embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
    network = SentimentNet(vocab_size=embedding_table.shape[0],
                           embed_size=cfg.embed_size,
                           num_hiddens=cfg.num_hiddens,
                           num_layers=cfg.num_layers,
                           bidirectional=cfg.bidirectional,
                           num_classes=cfg.num_classes,
                           weight=Tensor(embedding_table),
                           batch_size=cfg.batch_size)

    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
    loss_cb = LossMonitor()
    model = Model(network, loss, opt, {'acc': Accuracy()})

    print("============== Starting Training ==============")
    config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
                                 keep_checkpoint_max=cfg.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=args.ckpt_path, config=config_ck)
    time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
    if args.device_target == "CPU":
        model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb], dataset_sink_mode=False)
    else:
        model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
    print("============== Training Success ==============")

    args.ckpt_path = f'./lstm-{cfg.num_epochs}_390.ckpt'
    print("============== Starting Testing ==============")
    ds_eval = lstm_create_dataset(args.preprocess_path, cfg.batch_size, training=False)
    param_dict = load_checkpoint(args.ckpt_path)
    load_param_into_net(network, param_dict)
    if args.device_target == "CPU":
        acc = model.eval(ds_eval, dataset_sink_mode=False)
    else:
        acc = model.eval(ds_eval)
    print("============== {} ==============".format(acc))