Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
akg
提交
ff719bda
A
akg
项目概览
MindSpore
/
akg
通知
59
Star
7
Fork
7
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
A
akg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ff719bda
编写于
7月 30, 2020
作者:
L
lingyunli63
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm mean op
上级
5237a9a0
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
0 addition
and
117 deletion
+0
-117
python/akg/ms/gpu/__init__.py
python/akg/ms/gpu/__init__.py
+0
-1
python/akg/ms/gpu/mean.py
python/akg/ms/gpu/mean.py
+0
-69
python/akg/ops/math_gpu/mean.py
python/akg/ops/math_gpu/mean.py
+0
-47
未找到文件。
python/akg/ms/gpu/__init__.py
浏览文件 @
ff719bda
...
@@ -26,7 +26,6 @@ from .logical_or import LogicalOr
...
@@ -26,7 +26,6 @@ from .logical_or import LogicalOr
from
.relu6_grad
import
ReLU6Grad
from
.relu6_grad
import
ReLU6Grad
from
.squeeze
import
Squeeze
from
.squeeze
import
Squeeze
from
.squeeze_grad
import
SqueezeGrad
,
gpu_schedule_SqueezeGrad
from
.squeeze_grad
import
SqueezeGrad
,
gpu_schedule_SqueezeGrad
from
.mean
import
SimpleMean
from
.sub
import
Sub
from
.sub
import
Sub
from
.mul
import
Mul
from
.mul
import
Mul
from
.hsigmoid
import
HSigmoid
from
.hsigmoid
import
HSigmoid
...
...
python/akg/ms/gpu/mean.py
已删除
100644 → 0
浏览文件 @
5237a9a0
#!/usr/bin/env python3
# coding: utf-8
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mean op compute and schedule"""
from
.default_schedule
import
DEFAULT_GPU_THREAD
from
akg.ops.math_gpu.sum_value
import
sum_value
import
akg
from
akg.ops.math_gpu.mean
import
mean
def
gpu_schedule_Mean
(
outs
):
"""
gpu schedule function for mean.
Args:
outs (tvm.tensor.Tensor): outputs of compute.
Returns:
sch (schedule.Schedule): The created schedule.
"""
out
=
outs
[
0
]
if
isinstance
(
outs
,
list
)
else
outs
sch
=
tvm
.
create_schedule
(
out
.
op
)
if
out
.
op
.
name
==
"T_divide"
:
tensor_c
=
out
else
:
# squeeze
tensor_c
=
out
.
op
.
input_tensors
[
0
]
tensor_b
=
tensor_c
.
op
.
input_tensors
[
0
]
if
len
(
tensor_c
.
op
.
axis
)
>=
2
:
sch
[
tensor_b
].
compute_at
(
sch
[
tensor_c
],
tensor_c
.
op
.
axis
[
1
])
else
:
sch
[
tensor_b
].
compute_at
(
sch
[
tensor_c
],
tensor_c
.
op
.
axis
[
0
])
bx
,
tx
=
sch
[
tensor_c
].
split
(
tensor_c
.
op
.
axis
[
0
],
factor
=
DEFAULT_GPU_THREAD
)
sch
[
tensor_c
].
bind
(
bx
,
tvm
.
thread_axis
(
"blockIdx.x"
))
sch
[
tensor_c
].
bind
(
tx
,
tvm
.
thread_axis
(
"threadIdx.x"
))
return
sch
@
akg
.
schedule
(
gpu_schedule_Mean
)
def
Mean
(
data
,
axis
=
None
,
keepdims
=
False
):
return
mean
(
data
,
axis
,
keepdims
)
@
akg
.
schedule
(
gpu_schedule_Mean
)
def
SimpleMean
(
x
):
"""
SimpleMean compute the mean of the input 4D Tensor over last two axises and keep reduced dimensions.
Args:
x (tvm.tensor.Tensor): Tensor of type float16, float32.
Returns:
tvm.tensor.Tensor, has the same type as x, output shape will be (a, b, 1, 1) if input Tensor x is (a, b, c, d).
"""
axis
=
(
2
,
3
)
keepdims
=
True
return
mean
(
x
,
axis
,
keepdims
)
python/akg/ops/math_gpu/mean.py
已删除
100644 → 0
浏览文件 @
5237a9a0
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""operator dsl function: mean"""
import
akg.topi
import
akg.tvm
from
akg.utils
import
format_transform
as
ft_util
from
akg.utils
import
validation_check
as
vc_util
from
akg.ops.math_gpu
import
sum_value
@
vc_util
.
check_input_type
(
akg
.
tvm
.
tensor
.
Tensor
,
(
list
,
tuple
,
int
,
type
(
None
)),
(
bool
,
type
(
None
)))
def
mean
(
data
,
axis
=
None
,
keepdims
=
False
):
"""
Computes the mean of the values of a Tensor over the whole dataset.
Args:
data (tvm.tensor.Tensor): Tensor.
axis (Union[list, tuple, int, None]): If the tuple is empty, the axis equal to None.
keepdims (bool): If keepdims equal to True, the result shape length is same to input shape length.
Returns:
tvm.tensor.Tensor, has the same type as data. If keepdims equal to True, all reduced dimensions are
retained with length 1. else these reduced axis will be eliminate.
"""
shape
=
[
x
.
value
for
x
in
data
.
shape
]
vc_util
.
reduce_axis_check
(
shape
,
axis
)
axis
=
ft_util
.
refine_reduce_axis
(
data
,
axis
)
count
=
1
for
i
in
axis
:
count
*=
shape
[
i
]
output
,
_
=
sum_value
.
sum_value
(
data
,
axis
,
keepdims
)
res
=
akg
.
topi
.
divide
(
output
,
count
)
return
res
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录