From ff719bda52cda7fb0f4b04db638fb839232a858c Mon Sep 17 00:00:00 2001 From: lingyunli63 Date: Thu, 30 Jul 2020 10:37:52 +0800 Subject: [PATCH] rm mean op --- python/akg/ms/gpu/__init__.py | 1 - python/akg/ms/gpu/mean.py | 69 --------------------------------- python/akg/ops/math_gpu/mean.py | 47 ---------------------- 3 files changed, 117 deletions(-) delete mode 100644 python/akg/ms/gpu/mean.py delete mode 100644 python/akg/ops/math_gpu/mean.py diff --git a/python/akg/ms/gpu/__init__.py b/python/akg/ms/gpu/__init__.py index 76f2e39..3d9c93a 100644 --- a/python/akg/ms/gpu/__init__.py +++ b/python/akg/ms/gpu/__init__.py @@ -26,7 +26,6 @@ from .logical_or import LogicalOr from .relu6_grad import ReLU6Grad from .squeeze import Squeeze from .squeeze_grad import SqueezeGrad, gpu_schedule_SqueezeGrad -from .mean import SimpleMean from .sub import Sub from .mul import Mul from .hsigmoid import HSigmoid diff --git a/python/akg/ms/gpu/mean.py b/python/akg/ms/gpu/mean.py deleted file mode 100644 index cb0ae9a..0000000 --- a/python/akg/ms/gpu/mean.py +++ /dev/null @@ -1,69 +0,0 @@ -#!/usr/bin/env python3 -# coding: utf-8 -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""mean op compute and schedule""" -from .default_schedule import DEFAULT_GPU_THREAD -from akg.ops.math_gpu.sum_value import sum_value -import akg -from akg.ops.math_gpu.mean import mean - -def gpu_schedule_Mean(outs): - """ - gpu schedule function for mean. - - Args: - outs (tvm.tensor.Tensor): outputs of compute. - - Returns: - sch (schedule.Schedule): The created schedule. - """ - out = outs[0] if isinstance(outs, list) else outs - - sch = tvm.create_schedule(out.op) - if out.op.name == "T_divide": - tensor_c = out - else: # squeeze - tensor_c = out.op.input_tensors[0] - - tensor_b = tensor_c.op.input_tensors[0] - if len(tensor_c.op.axis) >= 2: - sch[tensor_b].compute_at(sch[tensor_c], tensor_c.op.axis[1]) - else: - sch[tensor_b].compute_at(sch[tensor_c], tensor_c.op.axis[0]) - - bx, tx = sch[tensor_c].split(tensor_c.op.axis[0], factor=DEFAULT_GPU_THREAD) - sch[tensor_c].bind(bx, tvm.thread_axis("blockIdx.x")) - sch[tensor_c].bind(tx, tvm.thread_axis("threadIdx.x")) - return sch - -@akg.schedule(gpu_schedule_Mean) -def Mean(data, axis=None, keepdims=False): - return mean(data, axis, keepdims) - -@akg.schedule(gpu_schedule_Mean) -def SimpleMean(x): - """ - SimpleMean compute the mean of the input 4D Tensor over last two axises and keep reduced dimensions. - - Args: - x (tvm.tensor.Tensor): Tensor of type float16, float32. - - Returns: - tvm.tensor.Tensor, has the same type as x, output shape will be (a, b, 1, 1) if input Tensor x is (a, b, c, d). - """ - axis = (2, 3) - keepdims = True - return mean(x, axis, keepdims) diff --git a/python/akg/ops/math_gpu/mean.py b/python/akg/ops/math_gpu/mean.py deleted file mode 100644 index 5c738df..0000000 --- a/python/akg/ops/math_gpu/mean.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright 2019 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""operator dsl function: mean""" -import akg.topi -import akg.tvm -from akg.utils import format_transform as ft_util -from akg.utils import validation_check as vc_util -from akg.ops.math_gpu import sum_value - - -@vc_util.check_input_type(akg.tvm.tensor.Tensor, (list, tuple, int, type(None)), (bool, type(None))) -def mean(data, axis=None, keepdims=False): - """ - Computes the mean of the values of a Tensor over the whole dataset. - - Args: - data (tvm.tensor.Tensor): Tensor. - axis (Union[list, tuple, int, None]): If the tuple is empty, the axis equal to None. - keepdims (bool): If keepdims equal to True, the result shape length is same to input shape length. - - Returns: - tvm.tensor.Tensor, has the same type as data. If keepdims equal to True, all reduced dimensions are - retained with length 1. else these reduced axis will be eliminate. - """ - shape = [x.value for x in data.shape] - vc_util.reduce_axis_check(shape, axis) - axis = ft_util.refine_reduce_axis(data, axis) - - count = 1 - for i in axis: - count *= shape[i] - output, _ = sum_value.sum_value(data, axis, keepdims) - res = akg.topi.divide(output, count) - - return res -- GitLab