提交 6335daad 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!71 support composite and unified build/launch for gpu

Merge pull request !71 from Gaoxiong/master
...@@ -64,6 +64,13 @@ class AKGMetaPathLoader: ...@@ -64,6 +64,13 @@ class AKGMetaPathLoader:
sys.modules[fullname] = self.__target_module sys.modules[fullname] = self.__target_module
return self.__target_module return self.__target_module
def schedule(sch, target = 'cuda'):
def decorator(func):
def wrapper(*args, **kwargs):
output = func(*args, **kwargs)
return {'schedule' : sch, 'target' : target, 'output' : output, 'op_name' : func.__name__}
return wrapper
return decorator
sys.meta_path.insert(0, AKGMetaPathFinder()) sys.meta_path.insert(0, AKGMetaPathFinder())
......
...@@ -19,7 +19,8 @@ import json ...@@ -19,7 +19,8 @@ import json
from akg import tvm from akg import tvm
from akg.tvm import _api_internal from akg.tvm import _api_internal
from .repository import __all__ as repository from .repository import __all__ as repository
import topi
from akg.utils import dump_cuda_meta
def generate_trait(desc): def generate_trait(desc):
""" generate trait of kernel description """ """ generate trait of kernel description """
...@@ -116,6 +117,9 @@ def _build_to_func(desc_s, desc_d, attr=None): ...@@ -116,6 +117,9 @@ def _build_to_func(desc_s, desc_d, attr=None):
return func(desc_s, attr) return func(desc_s, attr)
def _build(desc_s, desc_d, attr=None): def _build(desc_s, desc_d, attr=None):
if desc_d['process'] == 'gpu':
func = tvm.get_global_func("composite_with_json")
return func(desc_s, attr)
rst = _build_to_func(desc_s, desc_d, attr) rst = _build_to_func(desc_s, desc_d, attr)
return _api_internal._BuildToModule(rst) return _api_internal._BuildToModule(rst)
...@@ -163,3 +167,16 @@ def get_tiling_space(kernel_desc, level=1, attr=None): ...@@ -163,3 +167,16 @@ def get_tiling_space(kernel_desc, level=1, attr=None):
if level >= 2: if level >= 2:
spaces['tuning_space'] = ret.tiling_candidate.asnumpy().tolist() spaces['tuning_space'] = ret.tiling_candidate.asnumpy().tolist()
return spaces return spaces
@tvm.register_func("akg_build_gpu_module")
def build_cuda(outputs, args, sch_name, kernel_name):
scheduler = {
"injective" : topi.cuda.schedule_injective,
"reduce" : topi.cuda.schedule_reduce,
}
with tvm.target.cuda() as cuda:
s = scheduler[sch_name](outputs)
with tvm.build_config(dump_pass_ir = True):
mod = tvm.build(s, args, cuda, name = kernel_name)
dump_cuda_meta.dump(mod, kernel_name, s, list(args))
return mod
...@@ -27,4 +27,5 @@ from .squeeze import Squeeze, gpu_schedule_Squeeze ...@@ -27,4 +27,5 @@ from .squeeze import Squeeze, gpu_schedule_Squeeze
from .squeeze_grad import SqueezeGrad, gpu_schedule_SqueezeGrad from .squeeze_grad import SqueezeGrad, gpu_schedule_SqueezeGrad
from .mean import SimpleMean, gpu_schedule_SimpleMean from .mean import SimpleMean, gpu_schedule_SimpleMean
from .mean_grad import SimpleMeanGrad, gpu_schedule_SimpleMeanGrad from .mean_grad import SimpleMeanGrad, gpu_schedule_SimpleMeanGrad
from .mul import Mul, gpu_schedule_Mul
from .mul import Mul
...@@ -15,29 +15,12 @@ ...@@ -15,29 +15,12 @@
# limitations under the License. # limitations under the License.
"""mul""" """mul"""
import akg
import akg.topi as topi import akg.topi as topi
import akg.tvm as tvm import akg.tvm as tvm
from akg.ops.math import mul from akg.ops.math import mul
@akg.schedule(topi.cuda.schedule_injective)
def Mul(x, y): def Mul(x, y):
"""mul.""" """mul."""
return mul.mul(x, y) return mul.mul(x, y)
def gpu_schedule_Mul(outs):
"""
gpu schedule for mul.
Args:
outs (tvm.tensor.Tensor): outputs of compute.
Returns:
sch (schedule.Schedule): The created schedule.
"""
device = 'cuda'
ctx = tvm.context(device, 0)
if not ctx.exist:
raise SystemError("Skip because %s is not enabled" % device)
with tvm.target.create(device):
sch = topi.cuda.schedule_broadcast(outs)
return sch
#!/usr/bin/env python3
# coding: utf-8
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""save gpu param"""
import os
import fcntl
import hashlib
import akg.tvm
def get_dim(dim, axis=True):
"""get dim info"""
dims_str = {
"grid_dim0": "// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = ",
"grid_dim1": "// attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = ",
"grid_dim2": "// attr [iter_var(blockIdx.z, , blockIdx.z)] thread_extent = ",
"block_dim0": "// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = ",
"block_dim1": "// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = ",
"block_dim2": "// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = "
}
dim_to_axis = {
"grid_dim0": '"blockIdx.x" : ',
"grid_dim1": '"blockIdx.y" : ',
"grid_dim2": '"blockIdx.z" : ',
"block_dim0": '"threadIdx.x" : ',
"block_dim1": '"threadIdx.y" : ',
"block_dim2": '"threadIdx.z" : '
}
if axis:
return dim_to_axis.get(dim)
return dims_str.get(dim)
def parse_params(file, dim, ir):
"""parse parameters"""
dim_str = get_dim(dim, axis=False)
pos = ir.find(dim_str)
if pos != -1:
index = pos + len(dim_str)
param_temp = get_dim(dim)
while ir[index].isdigit():
param_temp += ir[index]
index += 1
file.write(param_temp + ",\n")
else:
param_temp = get_dim(dim) + '1'
file.write(param_temp + ",\n")
def save_gpu_params(s, args, kernel_info):
"""save gpu parameters"""
ptx_code = kernel_info[0]
file_name = kernel_info[1]
kernel_name = kernel_info[2]
ir = str(akg.tvm.lower(s, args, simple_mode=True))
file_path = os.path.realpath(file_name)
if os.path.exists(file_path):
os.remove(file_path)
sha256 = hashlib.sha256()
sha256.update(ptx_code.encode("utf-8"))
hash_str = sha256.hexdigest()
with os.fdopen(os.open(file_path, os.O_WRONLY | os.O_CREAT, 0o400), 'w') as fo:
fo.write("{\n")
fo.write('"kernelName" : ' + '"' + kernel_name + "_kernel0" + '",\n')
parse_params(fo, "grid_dim0", ir)
parse_params(fo, "grid_dim1", ir)
parse_params(fo, "grid_dim2", ir)
parse_params(fo, "block_dim0", ir)
parse_params(fo, "block_dim1", ir)
parse_params(fo, "block_dim2", ir)
fo.write('"sha256" : ' + '"' + hash_str + '"\n')
fo.write("}\n")
def dump(mod, kernel_name, sch, args):
meta_path = "./cuda_meta/"
cuda_path = os.path.realpath(meta_path)
if not os.path.isdir(cuda_path):
os.makedirs(cuda_path)
ptx_file = os.path.realpath(meta_path + kernel_name + ".ptx")
with open(ptx_file, "at") as f:
fcntl.flock(f.fileno(), fcntl.LOCK_EX)
f.seek(0, 2)
if f.tell() == 0:
ptx_code = mod.imported_modules[0].get_source('ptx')
f.write(ptx_code)
param_path = os.path.realpath(meta_path + kernel_name + '.json')
save_gpu_params(sch, args, (ptx_code, param_path, kernel_name))
\ No newline at end of file
...@@ -42,7 +42,7 @@ from akg.utils import format_transform as ft_util ...@@ -42,7 +42,7 @@ from akg.utils import format_transform as ft_util
from akg.utils import custom_tiling as ct_util from akg.utils import custom_tiling as ct_util
from akg.utils import validation_check as vc_util from akg.utils import validation_check as vc_util
from akg.utils.dsl_create import TensorUtils from akg.utils.dsl_create import TensorUtils
from akg.utils import dump_cuda_meta
sh = logging.StreamHandler(sys.stdout) sh = logging.StreamHandler(sys.stdout)
logging.getLogger().addHandler(sh) logging.getLogger().addHandler(sh)
...@@ -435,6 +435,12 @@ def mod_launch(mod, args, outputs=(-1,), tuning=False, device_id=0, expect=None) ...@@ -435,6 +435,12 @@ def mod_launch(mod, args, outputs=(-1,), tuning=False, device_id=0, expect=None)
""" """
gc.collect() gc.collect()
if mod.imported_modules[0].type_key == 'cuda':
ctx = akg.tvm.context('cuda', device_id)
mod_args = [akg.tvm.nd.array(a, ctx) for a in args]
mod(*mod_args)
out_list = [mod_args[len(args) + i if i < 0 else i].asnumpy() for i in outputs]
return out_list[0] if len(out_list) == 1 else tuple(out_list)
stat_info = {} stat_info = {}
profiling_mode = get_profiling_mode() profiling_mode = get_profiling_mode()
...@@ -679,7 +685,7 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="", ...@@ -679,7 +685,7 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="",
attrs['dim'] = dim_info attrs['dim'] = dim_info
compute_func = None # func which is defined in dsl for doing compute_inline or other compute_func = None # func which is defined in dsl for doing compute_inline or other
sch_tmpl = None
if isinstance(output, (list, tuple)): if isinstance(output, (list, tuple)):
from inspect import isfunction from inspect import isfunction
new_outputs = [] new_outputs = []
...@@ -696,6 +702,9 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="", ...@@ -696,6 +702,9 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="",
new_outputs.append(elem) new_outputs.append(elem)
output = new_outputs output = new_outputs
elif isinstance(output, dict):
sch_tmpl = output
output = sch_tmpl['output']
binds = None if not attrs else attrs.pop(BINDS, None) binds = None if not attrs else attrs.pop(BINDS, None)
op_var = [] op_var = []
...@@ -715,6 +724,16 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="", ...@@ -715,6 +724,16 @@ def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="",
if TensorUtils.is_output_value(output): if TensorUtils.is_output_value(output):
op_var = op_var + [output] op_var = op_var + [output]
if sch_tmpl != None:
assert(sch_tmpl['target'] == 'cuda')
kernel_name = kernel_name if kernel_name != "" else sch_tmpl['op_name']
with akg.tvm.target.cuda() as target:
s = sch_tmpl['schedule'](sch_tmpl['output'])
with akg.tvm.build_config(dump_pass_ir = True):
mod = akg.tvm.build(s, op_var, target, target_host = 'stackvm', name = kernel_name)
dump_cuda_meta.dump(mod, kernel_name, s, op_var)
return mod
if isinstance(output, (list, tuple)): if isinstance(output, (list, tuple)):
tmp = [] tmp = []
for x in list(output): for x in list(output):
......
...@@ -459,7 +459,44 @@ NodeRef composite_with_json_to_func(const std::string &json_str, Map<std::string ...@@ -459,7 +459,44 @@ NodeRef composite_with_json_to_func(const std::string &json_str, Map<std::string
return build_rst; return build_rst;
} }
std::string get_process(const std::string &json_str) {
size_t pos = json_str.find("\"process\"");
if (pos != std::string::npos && json_str.find("gpu", pos) != std::string::npos) {
return "gpu";
}
return "aicore";
}
std::string get_schedule(Array<Tensor> &outputs) {
for (const Tensor &t : outputs) {
if (t->op->tag == "comm_reduce" || t->op->tag == "comm_reduce_idx") {
return "reduce";
}
}
return "injective";
}
Module composite_with_json_gpu(const std::string &json_str, Map<std::string, NodeRef> attrs) {
picojson::value v;
std::string err = picojson::parse(v, json_str);
if (!err.empty()) {
LOG(ERROR) << "json parse error, error message: " << err;
}
Array<Tensor> tensors;
Array<NodeRef> args;
Map<Tensor, Buffer> in_binds;
std::string kernel_name;
extract_op_info(v, &tensors, &args, &kernel_name, &in_binds);
const auto* build_func = air::runtime::Registry::Get("akg_build_gpu_module");
CHECK(build_func != nullptr);
std::string sch = get_schedule(tensors);
return (*build_func)(tensors, args, sch, kernel_name);
}
Module composite_with_json(const std::string &json_str, Map<std::string, NodeRef> attrs) { Module composite_with_json(const std::string &json_str, Map<std::string, NodeRef> attrs) {
if (get_process(json_str) == "gpu") {
return composite_with_json_gpu(json_str, attrs);
}
auto build_rst = composite_with_json_to_func(json_str, attrs); auto build_rst = composite_with_json_to_func(json_str, attrs);
return BuildToModule(build_rst); return BuildToModule(build_rst);
} }
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import numpy as np
from akg.ms.gpu import Mul
from gen_random import random_gaussian
from akg.utils import kernel_exec as utils
def gen_data(shape, dtype):
support_list = {"float16": np.float16, "float32": np.float32}
lhd = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype])
rhd = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype])
expect = np.multiply(lhd, rhd)
output = np.full(shape, np.nan, dtype)
return lhd, rhd, output, expect
def test_ms_mul(shape, dtype):
mod = utils.op_build(Mul, (shape, shape), (dtype, dtype))
lhd, rhd, output, expect = gen_data(shape, dtype)
output = utils.mod_launch(mod, (lhd, rhd, output), expect = expect)
np.allclose(output, expect, rtol=5e-03, atol=1.e-8)
if __name__ == '__main__':
test_ms_mul((1024, 4096), 'float32')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册