storage_rewrite_cce.cc 38.7 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/**
 * Copyright 2019 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_mutator.h>
#include <tvm/ir_visitor.h>
#include <tvm/target_info.h>
#include <tvm/arithmetic.h>
#include <arithmetic/compute_expr.h>
#include <runtime/thread_storage_scope.h>

#include <fstream>
#include <regex>

#include "ir_pass.h"
#include "pass/ir_util.h"
#include "emit_insn/insn_info.h"
#include "pass/storage_rewrite_cce.h"
#include "pass/common.h"
#include "pass/utils.h"
#include "pass/expr_alg_simplify.h"

namespace akg {
namespace ir {
using ktvm::arith::IntSet;
using ktvm::runtime::StorageRank;
using ktvm::runtime::StorageScope;

constexpr auto READ_MASK = 1;
constexpr auto WRITE_MASK = 2;

inline bool prove_equal(const Expr lhs, const Expr rhs) { return is_zero(Simplify(lhs - rhs)); }

void LivenessAnalyzer::Analyze(const Stmt stmt) {
  Visit(stmt);
  CHECK(alloc_keys_.size() == alloc_.size());
  for (auto &a : alloc_keys_) {
    auto &touched = alloc_.at(a).touched;
    if (!touched.empty()) {
      liveness_[touched.front()].gen.emplace_back(a);
      liveness_[touched.back()].kill.emplace_back(a);
    }
  }
}

void LivenessAnalyzer::Visit_(const AttrStmt *op) {
  if (op->attr_key == ktvm::ir::attr::storage_scope) {
    const auto buf = op->node.as<Variable>();
    auto pragma = op->value.as<StringImm>();
    CHECK(pragma != nullptr);
    if (alloc_.find(buf) == alloc_.end()) {
      alloc_keys_.emplace_back(buf);
    }
    alloc_[buf].scope = StorageScope::make(pragma->value);
  } else if (op->attr_key == "pragma_insn_partition") {
    PushScope(op);
    in_insn_partition_ = true;
    IRVisitor::Visit_(op);
    in_insn_partition_ = false;
    PopScope();
    return;
  }
  IRVisitor::Visit_(op);
}

void LivenessAnalyzer::Visit_(const Allocate *op) {
  const Variable *buf = op->buffer_var.get();
  auto it = alloc_.find(buf);
  CHECK(it != alloc_.end() && it->second.alloc == nullptr);
  it->second.alloc = op;
  it->second.level = static_cast<int>(scope_touch_.size());
  IRVisitor::Visit_(op);
}

void LivenessAnalyzer::Visit_(const For *op) {
  PushScope(op);
  IRVisitor::Visit_(op);
  PopScope();
}

void LivenessAnalyzer::Visit_(const IfThenElse *op) {
  PushScope(op);
  IRVisitor::Visit_(op);
  PopScope();
}

void LivenessAnalyzer::Visit_(const Store *op) {
  PushScope(op);
  IRVisitor::Visit_(op);
  TouchBuffer(op->buffer_var.get());
  PopScope();
}

void LivenessAnalyzer::Visit_(const Evaluate *op) {
  PushScope(op);
  IRVisitor::Visit_(op);
  PopScope();
}

void LivenessAnalyzer::Visit_(const Load *op) {
  IRVisitor::Visit_(op);
  TouchBuffer(op->buffer_var.get());
}

void LivenessAnalyzer::Visit_(const Variable *buf) { TouchBuffer(buf); }

void LivenessAnalyzer::TouchBuffer(const Variable *buf) {
  auto it = alloc_.find(buf);
  if (it != alloc_.end()) {
    AllocEntry &e = it->second;
    ScopeTouch &t = scope_touch_[e.level];
    if (!t.touched.count(buf)) {
      t.touched.insert(buf);
      e.touched.emplace_back(t.entry);
    }
  }
}

void LivenessAnalyzer::PushScope(const Node *stmt) {
  if (in_insn_partition_) return;
  int idx = static_cast<int>(liveness_.size());
  liveness_.emplace_back(StmtEntry{stmt});
  scope_touch_.emplace_back(ScopeTouch{idx});
}

void LivenessAnalyzer::PopScope() {
  if (in_insn_partition_) return;
  CHECK(!scope_touch_.empty());
  ScopeTouch &t = scope_touch_.back();
  int size = static_cast<int>(liveness_.size());
  if (t.entry < size - 1) {
    liveness_.emplace_back(StmtEntry{liveness_[t.entry].stmt});
    for (const Variable *buf : t.touched) {
      alloc_[buf].touched.emplace_back(size);
    }
  }
  scope_touch_.pop_back();
}

// check if dst_address can reuse src_address
bool InplaceOpVerifierCCE::CanReuse(const MemInfo &src_address, const MemInfo &dst_address, bool spec_ins) const {
  CHECK(prove_equal(src_address.repeatTime, dst_address.repeatTime));
  CHECK(prove_equal(src_address.blockNumber, dst_address.blockNumber));

  // rule 1, the block size and block stride should be 100% the same
  if (!prove_equal(dst_address.blockSize, src_address.blockSize) ||
      !prove_equal(dst_address.blockStride, src_address.blockStride)) {
    return false;
  }
  // rule 2, it should not use inplace when transpose exist
  auto src_vars = GetVarsInExpr(src_address.offset);
  auto dst_vars = GetVarsInExpr(dst_address.offset);
  Array<Expr> src_strides = ktvm::arith::DetectLinearEquation(src_address.offset, src_vars);
  Array<Expr> dst_strides = ktvm::arith::DetectLinearEquation(dst_address.offset, dst_vars);
  // repeat can be viewd as a var when repeatTime is greater than 1
  if (!prove_equal(dst_address.repeatTime, 1) && !src_vars.empty() && !dst_vars.empty()) {
    auto repeat_var = Variable::make(src_vars[0].type(), "repeat_var");
    Insert(src_vars, 0, repeat_var);
    Insert(dst_vars, 0, repeat_var);
    Insert(src_strides, 0, truncdiv(src_address.repeatStride, src_address.type.bytes()));
    Insert(dst_strides, 0, truncdiv(dst_address.repeatStride, dst_address.type.bytes()));
  }
  Array<Expr> tmp_shape(src_vars.size(), Expr(1));
  SortVarShapeAndStride(src_vars, tmp_shape, src_strides);
  SortVarShapeAndStride(dst_vars, tmp_shape, dst_strides);
  if (!IsSame(src_vars, dst_vars)) {
    return false;
  }

  if (prove_equal(dst_address.repeatTime, 1)) {
    return true;
  }
  // the dst memory should be smaller than src memory
  if (!prove_equal(src_address.repeatStride, dst_address.repeatStride) &&
      prove_equal(dst_address.repeatStride, max(dst_address.repeatStride, src_address.repeatStride))) {
    return false;
  }
  // if the dst and src are with same dtype,
  // but strides are different, and not contain 0,
  // then they can not be inplace according to ISA6.3 Section 8.1.2
  if (!spec_ins && dst_address.type.bits() == src_address.type.bits() &&
      !prove_equal(src_address.repeatStride, dst_address.repeatStride) && !prove_equal(dst_address.repeatStride, 0) &&
      !prove_equal(src_address.repeatStride, 0)) {
    return false;
  }
  // do not have overlap between src and dst for more than one repeat time
  if (prove_equal(src_address.repeatStride,
                  max(src_address.repeatStride,
                      src_address.blockSize + src_address.blockStride * (src_address.blockNumber - 1)))) {
    return true;
  }
  // all the Sizes and Strides are equal
  if (prove_equal(dst_address.repeatStride, src_address.repeatStride)) {
    return true;
  }
  // rule 2, the vector must be {"vadd", "vsub", "vmul", "vmax", "vmin", "vor", "vand"},
  // and only can reuse dst and src2
  if (spec_ins && prove_equal(dst_address.repeatStride, 0) && prove_equal(src_address.repeatStride, 0)) {
    return true;
  }
  return false;
}

bool InplaceOpVerifierCCE::Check(const Node *stmt, const Variable *dst, const Variable *src) {
  dst_ = dst;
  src_ = src;
  result_ = true;
  IRVisitor::Visit(GetRef<Stmt>(static_cast<const StmtNode *>(stmt)));
  return result_;
}

void InplaceOpVerifierCCE::Visit(const NodeRef &e) {
  if (result_) {
    IRVisitor::Visit(e);
  }
}

void InplaceOpVerifierCCE::Visit_(const Variable *op) {
  if (op == dst_ || op == src_) {
    result_ = false;
  }
}

void InplaceOpVerifierCCE::Visit_(const Call *op) {
  if (op->call_type == Call::Extern) {
    if (op->name == "copy_ubuf_to_ubuf") {
      result_ = false;
      return;
    }
    MemInfo src_address, dst_address;
    this->Visit(op->args[0]);  // dst
    if (mem_info_.base != dst_) {
      result_ = false;
      return;
    }
    dst_address = mem_info_;

    bool checkSrc = false;
    int srcCount = 0;
    for (srcCount = 1; srcCount < 3; ++srcCount) {
      const Call *insn = op->args[srcCount].as<Call>();
      if (insn != nullptr) {
        this->Visit(op->args[srcCount]);
        if (mem_info_.base == src_) {
          src_address = mem_info_;
          checkSrc = true;
          break;
        }
      } else {
        break;
      }
    }
    if (!checkSrc) {
      // can not find src in vector,such as in for_body
      result_ = false;
      return;
    }

    // when overlap, the instructions that can reuse dst address and src address in limited situation,
    // only src2 and dst can reuse,such as a=b+a ,so srcCount==2
    auto it = find(reuse_intrin_name_.begin(), reuse_intrin_name_.end(), op->name);
    if (!CanReuse(src_address, dst_address, it != reuse_intrin_name_.end() && srcCount == 2)) {
      result_ = false;
      return;
    }
  } else if (op->is_intrinsic(ktvm::ir::intrinsic::tvm_access_ptr)) {
    CHECK_GE(op->args.size(), 10U);
    mem_info_.offset = op->args[2];
    mem_info_.extent = op->args[3];
    mem_info_.type = op->args[0].type();
    mem_info_.repeatTime = op->args[5];
    mem_info_.repeatStride = op->args[6];
    mem_info_.blockNumber = op->args[7];
    mem_info_.blockStride = op->args[8];
    mem_info_.blockSize = op->args[9];
    mem_info_.base = op->args[1].as<Variable>();
    CHECK(mem_info_.base != nullptr);
  } else {
    IRVisitor::Visit_(op);
  }
}

void InplaceOpVerifierCCE::Visit_(const Store *op) {
  const Variable *buf = op->buffer_var.get();
  if (buf == dst_ || buf == src_) {
    result_ = false;
    return;
  }
  IRVisitor::Visit_(op);
}
void InplaceOpVerifierCCE::Visit_(const Load *op) {
  const Variable *buf = op->buffer_var.get();
  if (buf == dst_ || buf == src_) {
    result_ = false;
    return;
  }
  IRVisitor::Visit_(op);
}

void PipelineAnalyzer::Visit_(const Load *op) {
  if (cur_proc_ != nullptr) {
    const Variable *buf = op->buffer_var.get();
    AccessBuffer(buf, false);
  }
  IRVisitor::Visit_(op);
}

void PipelineAnalyzer::Visit_(const Store *op) {
  if (cur_proc_ != nullptr) {
    const Variable *buf = op->buffer_var.get();
    AccessBuffer(buf, true);
  }
  IRVisitor::Visit_(op);
}

void PipelineAnalyzer::Visit_(const Call *op) {
  if (cur_proc_ != nullptr) {
    if (op->is_intrinsic(ktvm::ir::intrinsic::tvm_access_ptr)) {
      CHECK_GE(op->args.size(), 5U);
      const auto buf = op->args[1].as<Variable>();
      const auto imm = op->args[4].as<IntImm>();
      if ((buf != nullptr) && (imm != nullptr)) {
        int rw = static_cast<int>(imm->value);
        AccessBuffer(buf, rw != READ_MASK);
      }
    } else if (op->name == "set_vector_mask") {
      cur_proc_->barrier = PIPE_V;
      return;
    }
  }
  IRVisitor::Visit_(op);
}

void PipelineAnalyzer::Visit_(const AttrStmt *op) {
  if (op->attr_key == ktvm::ir::attr::coproc_scope) {
    if (!playback_) {
      std::shared_ptr<Proc> proc = std::make_shared<Proc>(next_proc_index_++);
      proc_.emplace(op, proc);
      cur_proc_ = proc.get();
      IRVisitor::Visit_(op);
      cur_proc_ = nullptr;
    } else {  // nest coproc may need it
      IRVisitor::Visit_(op);
    }
    if (op->value.as<IntImm>() != nullptr) {
      int pipe = op->value.as<IntImm>()->value % static_cast<int>(MAX_PIPE);
      AppendSpan(pipe, proc_[op].get());
      return;
    }
  }
  if (op->attr_key == ktvm::ir::attr::storage_scope && !playback_) {
    const auto buf = op->node.as<Variable>();
    buffer_.emplace(buf, Buffer{nullptr, nullptr});
  }
  IRVisitor::Visit_(op);
}

void PipelineAnalyzer::Visit_(const For *op) {
  IRVisitor::Visit_(op);
  if (cur_proc_ == nullptr) {
    bool old = playback_;
    playback_ = true;
    Visit(op->body);
    playback_ = old;
  }
}

void PipelineAnalyzer::Visit_(const IfThenElse *op) {
  if (cur_proc_ == nullptr) {
    Visit(op->then_case);
  } else {
    IRVisitor::Visit_(op);
  }
}

bool PipelineAnalyzer::PipeConflict(const Variable *buf1, const Variable *buf2) {
  auto it1 = buffer_.find(buf1);
  auto it2 = buffer_.find(buf2);
  if (it1 == buffer_.end() || it2 == buffer_.end()) {
    return false;
  }
  Buffer &b1 = it1->second;
  Buffer &b2 = it2->second;
  // inplace op
  if (b1.entry == nullptr || b2.entry == nullptr || b1.exit->index == b2.entry->index ||
      b2.exit->index == b1.entry->index) {
    return false;
  }
  std::vector<std::pair<int, int>> dom1, dom2;
  GetDomain(b1, dom1);
  GetDomain(b2, dom2);
  for (std::pair<int, int> &d1 : dom1) {
    for (std::pair<int, int> &d2 : dom2) {
      if (!(d1.first > d2.second || d2.first > d1.second)) return true;
    }
  }
  return false;
}

void PipelineAnalyzer::AccessBuffer(const Variable *buf, bool w) {
  CHECK(buf != nullptr);
  Buffer &buffer = buffer_[buf];
  if (buffer.entry == nullptr) {
    buffer.entry = cur_proc_;
    w = true;  // force first touch to be w
  }
  buffer.exit = cur_proc_;
  if (w) {
    cur_proc_->wbuf.push_back(buf);
  } else {
    cur_proc_->rbuf.push_back(buf);
  }
}

bool PipelineAnalyzer::DepBetween(const Proc *p1, const Proc *p2) {
  CHECK((p1 != nullptr) && (p2 != nullptr));
  for (const Variable *w : p1->wbuf) {
    for (const Variable *ww : p2->wbuf) {
      if (w == ww) return true;
    }
    for (const Variable *r : p2->rbuf) {
      if (w == r) return true;
    }
  }
  for (const Variable *r : p1->rbuf) {
    for (const Variable *w : p2->wbuf) {
      if (r == w) return true;
    }
  }
  return false;
}

void PipelineAnalyzer::AppendSpan(int pipe, Proc *proc) {
  if (proc == nullptr) {
    return;
  }
  if (proc->barrier != -1) {
    Barrier(pipe, proc);
    return;
  }
  int start = pipe_[pipe].empty() ? 0 : pipe_[pipe].back()->start;
  std::vector<Span *> end_span;
  for (int i = 0; i < MAX_PIPE; ++i) {
    for (auto it = pipe_[i].rbegin(); it != pipe_[i].rend(); ++it) {
      Span *s = it->get();
      if (s->end < start) break;
      if (DepBetween(proc, s->proc)) {
        if (s->end != infinite_) {
          if (s->end >= start) start = s->end + 1;
        } else {
          if (s->start >= start) start = s->start + 1;
          for (; it != pipe_[i].rend(); ++it) {
            Span *ss = it->get();
            if (ss->end != infinite_) break;
            end_span.push_back(ss);
          }
        }
        break;
      }
    }
  }
  for (Span *s : end_span) {
    s->end = start - 1;
  }
  std::shared_ptr<Span> span = std::make_shared<Span>(proc, start, infinite_);
  pipe_[pipe].emplace_back(span);
  proc->span.push_back(span.get());
}

void PipelineAnalyzer::Barrier(int pipe, Proc *proc) {
  if (pipe_[pipe].empty() || nullptr == proc) return;
  int end_time = pipe_[pipe].back()->start;
  for (auto it = pipe_[pipe].rbegin(); it != pipe_[pipe].rend(); ++it) {
    Span *s = it->get();
    if (s->end != infinite_) break;
    s->end = end_time;
  }
  int bar_start = end_time + 1;
  std::shared_ptr<Span> span = std::make_shared<Span>(proc, bar_start, bar_start);
  pipe_[pipe].emplace_back(span);
  proc->span.push_back(span.get());
}

void PipelineAnalyzer::GetDomain(const Buffer &buf, std::vector<std::pair<int, int>> &dom) {
  if (buf.entry == buf.exit) {
    for (const Span *span : buf.entry->span) {
      dom.emplace_back(std::make_pair(span->start, span->end));
    }
    return;
  }
  const std::vector<const Span *> &entry_span = buf.entry->span;
  const std::vector<const Span *> &exit_span = buf.exit->span;
  size_t entry_idx = 0;
  size_t exit_idx = 0;
  while (entry_idx < entry_span.size() && exit_idx < exit_span.size()) {
    const Span *entry = entry_span[entry_idx];
    const Span *exit = exit_span[exit_idx];
    // move exit to back
    for (entry_idx++; entry_idx < entry_span.size(); ++entry_idx) {
      const Span *next_entry = entry_span[entry_idx];
      if (next_entry->start > exit->start) {
        for (exit_idx++; exit_idx < exit_span.size() && exit_span[exit_idx]->start < next_entry->start; ++exit_idx) {
          exit = exit_span[exit_idx];
        }
        break;
      }
    }
    if (entry_idx == entry_span.size()) {
      exit = exit_span.back();
    }
    dom.emplace_back(std::make_pair(entry->start, exit->end));
  }
}

void StorageSizeDetector::Visit_(const AttrStmt *op) {
  const std::regex memlimit_regex("\\[MemoryLimit_([A-Za-z0-9]+)\\]");
  if (std::regex_match(op->attr_key, memlimit_regex)) {
    constraint_.push_back(Simplify(op->value));
  }
  IRVisitor::Visit_(op);
}

void StorageSizeDetector::init(const Stmt &s) {
  PostOrderVisit(s, [&](const NodeRef &node) {
    if (auto op = node.as<For>()) {
      loop_vars_[op->loop_var.get()] = op;
    }
  });
}

void ExpandVarsInExtentAndCond(Expr &extent, Array<Expr> &cond,
                               const std::unordered_map<const Variable *, Expr> &var_map) {
  bool found_undefined_vars = false;
  std::unordered_set<Var, NodeHash, NodeEqual> vars_in_extent, vars_in_cond;
  GatherVars(extent, &vars_in_extent);
  for (auto expr : cond) {
    GatherVars(expr, &vars_in_cond);
  }
  while (!vars_in_extent.empty()) {
    Var var = *vars_in_extent.begin();
    vars_in_extent.erase(var);
    if (vars_in_cond.count(var) > 0) continue;
    auto it = var_map.find(var.get());
    if (it == var_map.end()) {
      found_undefined_vars = true;
      continue;
    }

    std::unordered_map<const Variable *, Expr> substitute_map;
    substitute_map[var.get()] = it->second;
    extent = Substitute(extent, substitute_map);
    GatherVars(it->second, &vars_in_extent);
  }

  if (found_undefined_vars) {
    // try expand the conds
    for (auto i = 0u; i < cond.size(); ++i) {
      cond.Set(i, Substitute(cond[i], var_map));
    }
  }
}

/* Cache entry pack format:
 * Array<Expr>
 * [0]: extent
 * [1: cond.size() + 1]: cond
 * [cond.size() + 1]: result(bound)
 *
 * Assume vars_set does not affect the Inferbound result.
 */

Expr StorageSizeDetector::CachedInferBound(const Expr &extent, const Array<Expr> &var_cond, const Array<Expr> &cond,
                                           const std::unordered_set<Var, NodeHash, NodeEqual> &vars_set) {
  for (const auto &cache_entry : cached_infer_bound_) {
    if (cache_entry.size() == cond.size() + var_cond.size() + 2 && Equal(extent, cache_entry[0])) {
      bool equal = true;
      for (auto i = 0u; i < var_cond.size(); ++i) {
        if (!Equal(var_cond[i], cache_entry[i + 1])) {
          equal = false;
        }
      }
      for (auto i = 0u; i < cond.size(); ++i) {
        if (!Equal(cond[i], cache_entry[i + var_cond.size() + 1])) {
          equal = false;
        }
      }
      if (equal) {
        return cache_entry[var_cond.size() + cond.size() + 1];
      }
    }
  }

  Bound bound = InferBoundOfExprWithCond(extent, var_cond, cond, vars_set);
  Expr bound_max = GetConstIntUpBound(bound.max);

  // add to cache
  Array<Expr> cache_entry;
  cache_entry.push_back(extent);
  for (const auto &var_c : var_cond) {
    cache_entry.push_back(var_c);
  }
  for (const auto &c : cond) {
    cache_entry.push_back(c);
  }

  cache_entry.push_back(bound_max);
  cached_infer_bound_.push_back(cache_entry);
  return bound_max;
}

void StorageSizeDetector::Visit_(const Allocate *op) {
  CHECK_GE(op->constant_allocation_size(), 0) << "allocation size < 0";
  uint64_t alloc_size = static_cast<uint64_t>(op->constant_allocation_size());
  if (alloc_size == 0) {
    has_dyn_shape_ = true;
    CHECK_GT(op->extents.size(), 0);
    Expr extent = op->extents[0];
    for (size_t i = 1; i < op->extents.size(); ++i) {
      extent = extent * op->extents[i];
    }
    extent = Simplify(extent);
    Array<Expr> cond;
    Array<Expr> var_cond;
    for (auto constraint : constraint_) {
      if (constraint.as<And>()) {
        cond.push_back(constraint.as<And>()->a);
        cond.push_back(constraint.as<And>()->b);
      } else {
        cond.push_back(constraint);
      }
    }
    for (auto assert : assertions_) {
      cond.push_back(assert);
    }
    std::unordered_set<Var, NodeHash, NodeEqual> vars_set;
    std::unordered_set<Var, NodeHash, NodeEqual> vars_in_extent;
    GatherVars(extent, &vars_in_extent);
    for (auto var : vars_in_extent) {
      auto it = loop_vars_.find(var.get());
      if (it != loop_vars_.end()) {
        auto for_op = it->second;
        var_cond.push_back(for_op->loop_var >= for_op->min);
        var_cond.push_back(for_op->loop_var < Simplify(for_op->min + for_op->extent));
        vars_set.insert(for_op->loop_var);
      }
    }
    ExpandVarsInExtentAndCond(extent, cond, let_vars_);

    Array<Expr> related_cond;
    std::unordered_set<Var, NodeHash, NodeEqual> extent_vars, constraint_vars;
    GatherVars(extent, &extent_vars);
    for (auto constraint : cond) {
      GatherVars(constraint, &constraint_vars);
    }

    for (auto constraint_var : constraint_vars) {
      if (vars_set.count(constraint_var) == 0) {
        var_cond.push_back(constraint_var > make_const(constraint_var.type(), 0));
        vars_set.insert(constraint_var);
      }
    }

    bool dump_infer_bound = false;
    Expr bound_max = CachedInferBound(extent, var_cond, cond, vars_set);
    ktvm::MemoryInfo info = ktvm::GetMemoryInfo("local.UB");
    uint64_t max_num_bytes = static_cast<uint64_t>(info->max_num_bits) / 8;

    if (is_const(bound_max) && GetIntConst(bound_max) < INT_MAX && GetIntConst(bound_max) > 0) {
      alloc_size = GetIntConst(bound_max);
      if (alloc_size >= max_num_bytes / 2) {
        dump_infer_bound = true;
        LOG(INFO) << " BEGIN ============================";
        LOG(INFO) << "[WARN] Bound max of buffer " << op->buffer_var << "may be too large, please check";
      }
    } else {
      alloc_size = max_num_bytes;
      dump_infer_bound = true;
      LOG(INFO) << "BEGIN ================================";
      LOG(INFO) << "[WARN] InferBound for buffer size failed, use default size(" << alloc_size
                << "): buffer = " << op->buffer_var;
    }
    if (dump_infer_bound) {
      LOG(INFO) << "InferBound: expr: " << extent;
      LOG(INFO) << "InferBound: cond: " << cond;
      LOG(INFO) << "InferBound: bound.max: " << bound_max;
      LOG(INFO) << "END==================================";
    }
  }
  size_[op->buffer_var.get()] = alloc_size * op->type.bits() * op->type.lanes();
  IRVisitor::Visit_(op);
}

void StorageSizeDetector::Visit_(const LetStmt *op) {
  let_vars_[op->var.get()] = op->value;
  IRVisitor::Visit_(op);
}

void StorageSizeDetector::Visit_(const AssertStmt *op) {
  assertions_.push_back(op->condition);
  IRVisitor::Visit_(op);
}

std::unordered_set<const Variable *> GatherVarsInStmts(const std::vector<Stmt> &v) {
  std::unordered_set<const Variable *> vars;
  for (auto s : v) {
    PostOrderVisit(s, [&](const NodeRef &node) {
      if (auto var = node.as<Variable>()) {
        vars.insert(var);
      }
    });
  }
  return vars;
}

class PeelLetStmtsOfVarsMutator : public IRMutator {
 public:
  PeelLetStmtsOfVarsMutator(const std::unordered_set<const Variable *> &vars, std::vector<Stmt> &let_stmts)
      : vars(vars), let_stmts(let_stmts) {}
  ~PeelLetStmtsOfVarsMutator() override = default;

  Stmt Run(const Stmt &s) {
    PostOrderVisit(s, [&](const NodeRef &node) {
      if (auto let = node.as<LetStmt>()) {
        let_var_map[let->var.get()] = let->value;
      }
    });

    std::vector<Var> undefined_vars;
    for (auto var : vars) {
      auto it = let_var_map.find(var);
      if (it != let_var_map.end()) {
        GatherVars(it->second, &undefined_vars);
      }
    }
    while (!undefined_vars.empty()) {
      Var var = undefined_vars.back();
      undefined_vars.pop_back();
      if (vars.count(var.get())) continue;
      auto it = let_var_map.find(var.get());
      if (it != let_var_map.end()) {
        vars.insert(it->first);
        GatherVars(it->second, &undefined_vars);
      }
    }

    return Mutate(s);
  }

 private:
  Stmt Mutate_(const LetStmt *op, const Stmt &s) final {
    if (vars.count(op->var.get()) > 0) {
      let_stmts.emplace_back(LetStmt::make(op->var, op->value, Evaluate::make(0)));
      return IRMutator::Mutate(op->body);
    } else {
      return IRMutator::Mutate_(op, s);
    }
  };

  std::unordered_set<const Variable *> vars;
  std::unordered_map<const Variable *, Expr> let_var_map;
  std::vector<Stmt> &let_stmts;
};

class RewriteAllocateSizeToMax : public IRMutator {
 public:
  explicit RewriteAllocateSizeToMax(const std::unordered_map<const Variable *, uint64_t> &sm) : size_map(sm) {}
  ~RewriteAllocateSizeToMax() override = default;
  Stmt Mutate_(const Allocate *op, const Stmt &s) final {
    Stmt ret = IRMutator::Mutate_(op, s);
    op = ret.as<Allocate>();
    CHECK(op);
    auto it = size_map.find(op->buffer_var.get());
    if (it == size_map.end()) return ret;
    Array<Expr> new_extents = {IntImm::make(Int(32), it->second)};
    return Allocate::make(op->buffer_var, op->type, new_extents, op->condition, op->body, op->new_expr,
                          op->free_function);
  }

 private:
  std::unordered_map<const Variable *, uint64_t> size_map;
};

Stmt StoragePlanRewriterCCE::Rewrite(Stmt stmt, bool is_dynamic) {
  is_dynamic_ = is_dynamic;
  Prepare(stmt);
  bool is_dynamic_rewrite = false;
  std::vector<Stmt> nest;
  for (auto &scope : scope_allocs_) {
    // if static allocation failed, try dynamic allocation
    if (!DoRewrite(scope.first, scope.second.allocs)) {
      is_dynamic_rewrite = true;
      DoDynamicRewrite(scope.first, scope.second.allocs);
      MakeAlloc(scope.first, scope.second, nest, true);
    } else {
      MakeAlloc(scope.first, scope.second, nest, false);
    }
  }
  // remove original Allocate stmts
  stmt = Mutate(stmt);

  if (is_dynamic) {
    auto vars = GatherVarsInStmts(nest);
    std::vector<Stmt> outer_let_stmts;
    stmt = PeelLetStmtsOfVarsMutator(vars, outer_let_stmts).Run(stmt);
    stmt = ktvm::ir::MergeNest(outer_let_stmts, ktvm::ir::MergeNest(nest, stmt));
    if (!is_dynamic_rewrite) {
      stmt = RewriteAllocateSizeToMax(alloc_size_).Mutate(stmt);
    }
    return stmt;
  } else {
    return ktvm::ir::MergeNest(nest, stmt);
  }
}

// Make alloc with offset
void StoragePlanRewriterCCE::MakeAlloc(const std::string &scope_name, MemScope &scope, std::vector<Stmt> &nest,
                                       bool is_dynamic_scope) {
  for (auto &e : scope.allocs) {
    for (const Allocate *a : e->allocs) {
      Expr new_offset;
      if (is_dynamic_scope) {
        auto it = dynamic_alloc_offset_.find(a);
        CHECK(it != dynamic_alloc_offset_.end()) << "dynamic allocation offset not found";
        new_offset = it->second;
      } else if (ignore_ub_ && scope_name == "local.UB") {
        new_offset = a->new_expr;
      } else {
        const int BIT_NUM_PER_BYTE = 8;
        new_offset = make_const(Int(32), (e->offset + BIT_NUM_PER_BYTE - 1) / BIT_NUM_PER_BYTE);
      }
      nest.emplace_back(
        AttrStmt::make(a->buffer_var, ktvm::ir::attr::storage_scope, StringImm::make(scope_name), Evaluate::make(0)));
      nest.emplace_back(
        Allocate::make(a->buffer_var, a->type, a->extents, a->condition, Evaluate::make(0), new_offset));
    }
  }
}

Stmt StoragePlanRewriterCCE::Mutate_(const AttrStmt *op, const Stmt &s) {
  if (op->attr_key == ktvm::ir::attr::storage_scope) {
    return Mutate(op->body);
  }
  return IRMutator::Mutate_(op, s);
}

Stmt StoragePlanRewriterCCE::Mutate_(const Allocate *op, const Stmt &s) { return Mutate(op->body); }

void StoragePlanRewriterCCE::Prepare(const Stmt stmt) {
  pipe_analyzer_.Visit(stmt);
  LivenessAnalyzer liveness;
  liveness.Analyze(stmt);
  std::unordered_set<const Variable *> inplace_flag;
  std::unordered_map<const Node *, StmtEntry *> kill_entry;
  for (StmtEntry &s : liveness.liveness_) {
    kill_entry[s.stmt] = &s;
  }
  for (StmtEntry &s : liveness.liveness_) {
    for (const Variable *var : s.gen) {
      const AllocEntry &ae = liveness.alloc_.at(var);
      StorageEntry *entry = DetectInplace(s, kill_entry[s.stmt]->kill, ae, var, inplace_flag);
      if (entry == nullptr) {
        entry = GenBuffer(ae);
      }
      entry->allocs.emplace_back(ae.alloc);
      alloc_map_[var] = entry;
    }
    for (const Variable *var : s.kill) {
      const AllocEntry &ae = liveness.alloc_.at(var);
      if (!inplace_flag.count(var)) {
        KillBuffer(var, ae);
      }
    }
  }
}

StoragePlanRewriterCCE::StorageEntry *StoragePlanRewriterCCE::DetectInplace(
  const StmtEntry &s, const std::vector<const Variable *> &kill, const AllocEntry &ae, const Variable *var,
  std::unordered_set<const Variable *> &inplace_flag) {
  StoragePlanRewriterCCE::StorageEntry *dst_entry = nullptr;
  // only one inplace var for s.stmt
  bool inplace_found = false;
  for (const Variable *src : kill) {
    if (!inplace_flag.count(src) && alloc_map_.count(src)) {
      InplaceOpVerifierCCE visitor;
      StoragePlanRewriterCCE::StorageEntry *src_entry = alloc_map_.at(src);
      uint64_t const_nbits = alloc_size_[ae.alloc->buffer_var.get()];
      if (src_entry->scope == ae.scope && !inplace_found && src_entry->size >= const_nbits &&
          visitor.Check(s.stmt, var, src)) {
        dst_entry = src_entry;
        inplace_flag.insert(src);
        inplace_found = true;
      }
    }
  }
  return dst_entry;
}

StoragePlanRewriterCCE::StorageEntry *StoragePlanRewriterCCE::GenBuffer(const AllocEntry &ae) {
  MemScope &mem_scope = scope_allocs_[ae.scope.to_string()];
  std::unique_ptr<StorageEntry> entry(new StorageEntry());
  entry->size = alloc_size_[ae.alloc->buffer_var.get()];
  entry->alloc_time = mem_scope.time++;
  entry->scope = ae.scope;
  StorageEntry *e = entry.get();
  mem_scope.allocs.emplace_back(std::move(entry));
  return e;
}

void StoragePlanRewriterCCE::KillBuffer(const Variable *buf, const AllocEntry &ae) {
  CHECK(buf != nullptr);
  MemScope &mem_scope = scope_allocs_[ae.scope.to_string()];
  StorageEntry *entry = alloc_map_[buf];
  entry->free_time = mem_scope.time++;
}

// check if e1 an e2 is pipeline conflict
bool StoragePlanRewriterCCE::PipeConflict(const StoragePlanRewriterCCE::StorageEntry *e1,
                                          const StoragePlanRewriterCCE::StorageEntry *e2) {
  if (nullptr != e1 && nullptr != e2) {
    for (const Allocate *a1 : e1->allocs) {
      for (const Allocate *a2 : e2->allocs) {
        if (pipe_analyzer_.PipeConflict(a1->buffer_var.get(), a2->buffer_var.get())) return true;
      }
    }
  }
  return false;
}

// alloc buffer in speculative ways.
// alloc memory in 3 phase:
// 1. no pipe conflict with all existing allocation
// 2. no pipe conflict with last allocation, or no reuse with buffer just freed
// 3. any memory reusable
bool StoragePlanRewriterCCE::SpecAlloc(std::list<std::shared_ptr<MemoryBound>> &outline, std::vector<AllocRecord> &his,
                                       StoragePlanRewriterCCE::StorageEntry *e, uint64_t need_nbits, int spec_level,
                                       int child_idx) {
  CHECK(e != nullptr);
  auto level1_verify = [e, this](MemoryBound *last) -> bool {
    CHECK(last != nullptr);
    return !this->PipeConflict(last->entry, e) || e->alloc_time > last->time + 1;
  };
  auto level2_verify = [e, &his, this](uint64_t offset, uint64_t extent) -> bool {
    for (AllocRecord &r : his) {
      if ((r.insert->offset + r.insert->extent > offset) && (r.insert->offset < offset + extent) &&
          this->PipeConflict(r.insert->entry, e))
        return false;
    }
    return true;
  };
  for (auto start = outline.begin(); start != outline.end(); ++start) {
    uint64_t size = 0;
    for (auto end = start; end != outline.end(); ++end) {
      std::shared_ptr<MemoryBound> last = *end;
      if (e->alloc_time < last->time || (spec_level == 1 && !level1_verify(last.get()))) break;
      size += last->extent;
      if (size < need_nbits || (spec_level == 2 && !level2_verify((*start)->offset, need_nbits))) continue;
      // if nodes after start is size enough, alloc exclude the start to
      // avoid it to be fragment memory
      if (spec_level > 0 && (size - (*start)->extent >= need_nbits)) {
        size = size - (*start)->extent;
        ++start;
      }
      e->offset = (*start)->offset;
      ++end;
      std::shared_ptr<MemoryBound> bound;
      if (size > need_nbits) {
        bound = std::make_shared<MemoryBound>(last->time, last->offset + last->extent - (size - need_nbits),
                                              size - need_nbits, last->entry);
        end = outline.insert(end, bound);
      }
      bound = std::make_shared<MemoryBound>(e->free_time, e->offset, need_nbits, e);
      end = outline.insert(end, bound);

      his.emplace_back(AllocRecord{spec_level, child_idx, size > need_nbits, bound});
      // Violation: Check whether the container is empty before accessing "his"
      if (!his.empty()) {
        AllocRecord &r = his.back();
        r.replaced.splice(r.replaced.begin(), outline, start, end);
        return true;
      }
    }
  }
  return false;
}

bool StoragePlanRewriterCCE::MultiSpecAlloc(int &spec_level, const int spec_start_idx, const int MAX_SPEC_LEVEL,
                                            uint64_t &total_alloc_bits,
                                            std::list<std::shared_ptr<MemoryBound>> &outline,
                                            std::vector<AllocRecord> &history,
                                            StoragePlanRewriterCCE::StorageEntry *entry, const uint64_t need_nbits,
                                            int &child_idx) {
  if (entry == nullptr) {
    return false;
  }
  bool success = false;
  for (int i = spec_level; i >= 0; i--) {
    success = SpecAlloc(outline, history, entry, need_nbits, i, child_idx);
    if (success) {
      if (child_idx == spec_start_idx) {
        spec_level = MAX_SPEC_LEVEL;
      }
      if (entry->offset + need_nbits > total_alloc_bits) {
        total_alloc_bits = entry->offset + need_nbits;
      }
      child_idx++;
      break;
    }
  }
  return success;
}

// Dynamic allocation for merged data
void StoragePlanRewriterCCE::DoDynamicRewrite(const std::string scope,
                                              std::vector<std::unique_ptr<StorageEntry>> &allocs) {
  // By default, align to 4 bytes.
  size_t align_bytes = 4;
  ktvm::MemoryInfo info = ktvm::GetMemoryInfo(scope);
  if (info.defined()) {
    align_bytes = info->max_simd_bits / 8;
  }

  struct MemorySlot {
    Expr size;
    int use_until{0};
  };
  std::vector<MemorySlot> memory_slots;

  ExprSimplifier simplifier;
  for (auto &alloc : allocs) {
    Expr size;
    for (auto &buf : alloc->allocs) {
      CHECK(buf->extents.size() == 1) << "buffer must be flattened";
      Expr buf_bytes = buf->extents[0];
      buf_bytes = buf_bytes * make_const(buf_bytes.type(), buf->type.bytes());
      if (!simplifier.IsDivisible(buf_bytes, make_const(Int(32), align_bytes))) {
        buf_bytes = FloorDiv::make(buf_bytes + make_const(buf_bytes.type(), align_bytes - 1),
                                   make_const(buf_bytes.type(), align_bytes)) *
                    make_const(buf_bytes.type(), align_bytes);
      }
      if (size.defined()) {
        size = size + buf_bytes;
      } else {
        size = buf_bytes;
      }
    }
    CHECK(size.defined()) << "allocs is empty";
    size = simplifier.Simplify(size);

    Expr offset = 0;
    bool allocated = false;
    for (auto &slot : memory_slots) {
      if (slot.use_until <= alloc->alloc_time && Equal(slot.size, size)) {
        CHECK(alloc->free_time > alloc->alloc_time) << "alloc time must be before free time";
        slot.use_until = alloc->free_time;
        allocated = true;
        break;
      }
      offset = offset + slot.size;
    }
    offset = simplifier.Simplify(offset);

    if (!allocated) {
      MemorySlot new_slot;
      new_slot.size = size;
      new_slot.use_until = alloc->free_time;
      memory_slots.push_back(new_slot);
    }

    // store buffer offset
    for (auto buf : alloc->allocs) {
      // because buf is "const Allocate *", we cannot change it directly, we store the offset in another map
      CHECK(dynamic_alloc_offset_.count(buf) == 0) << "duplicate allocate";
      dynamic_alloc_offset_.emplace(buf, offset);
      LOG(INFO) << "dynamic alloc: buf " << buf->buffer_var << " size " << size << " allocated at offset " << offset;

      // get next offset
      offset = simplifier.Simplify(offset + buf->extents[0] * buf->type.bytes());
    }
  }
}

// New allocation for merged data
bool StoragePlanRewriterCCE::DoRewrite(const std::string scope, std::vector<std::unique_ptr<StorageEntry>> &allocs) {
  StorageEntry *e = allocs.front().get();
  std::vector<StorageEntry *> children;
  for (size_t i = 1; i < allocs.size(); ++i) {
    children.emplace_back(allocs[i].get());
  }
  ktvm::MemoryInfo info = ktvm::GetMemoryInfo(scope);
  // By default, align to 32 bits.
  size_t align = 32;
  uint64_t max_num_bits = 1024L * 1024 * 1024 * 8;
  if (info.defined()) {
    align = info->max_simd_bits;
    max_num_bits = info->max_num_bits;
  }
  std::list<std::shared_ptr<MemoryBound>> outline;
  std::vector<AllocRecord> history;
  const int MAX_SPEC_LEVEL = 2;
  int spec_level = MAX_SPEC_LEVEL;
  int spec_start_idx = 0;
  int child_idx = -1;
  uint64_t total_alloc_bits = 0;
  int children_num = static_cast<int>(children.size());
  outline.push_back(std::make_shared<MemoryBound>(-1, 0, max_num_bits, nullptr));
  StoragePlanRewriterCCE::StorageEntry *entry = e;
  while (child_idx < children_num) {
    uint64_t need_nbits = entry->size;
    if (need_nbits % align != 0) {
      need_nbits += align - (need_nbits % align);
    }
    bool success = false;
    success = MultiSpecAlloc(spec_level, spec_start_idx, MAX_SPEC_LEVEL, total_alloc_bits, outline, history, entry,
                             need_nbits, child_idx);
    if (!success) {  // speculate rollback
      if (child_idx > spec_start_idx) {
        spec_start_idx = child_idx;
      }
      // Check whether the container is empty before accessing "history"
      while (!history.empty()) {
        AllocRecord &r = history.back();
        auto it = std::find(outline.begin(), outline.end(), r.insert);
        CHECK(it != outline.end());
        if (r.tailed) {
          it = outline.erase(it);
        }
        it = outline.erase(it);
        outline.splice(it, r.replaced);
        child_idx = r.child_idx;
        spec_level = r.spec_level;
        history.pop_back();
        if (spec_level > 0) break;
      }
      if (spec_level <= 0 || child_idx < 0) {
        if (!is_dynamic_) {
          LOG(FATAL) << "Allocation exceed bound of memory tag " << scope << ": need " << need_nbits
                     << " bits, total alloc " << total_alloc_bits << " bits";
        } else {
          LOG(WARNING) << "Dynamic shape static allocation exceed bound of memory tag " << scope << ": need "
                       << need_nbits << " bits, will use dynamic allocation instead";
          return false;
        }
      }
      spec_level--;
    }
    if (child_idx == children_num) break;
    entry = children[child_idx];
  }
  return true;
}

Stmt StorageRewriteCCE(Stmt stmt, const std::string &maxsat_filename, bool use_BC_opt, bool no_limits,
                       int maxsat_timeout) {
  Stmt toRet;
  StorageSizeDetector size_detector;
  size_detector.init(stmt);
  size_detector.Visit(stmt);
  toRet = StoragePlanRewriterCCE(false, size_detector.size_).Rewrite(stmt, size_detector.has_dyn_shape_);
  return toRet;
}
}  // namespace ir
}  // namespace akg