quant_conv.py 22.0 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import sys
import akg.tvm
import secrets
import numpy as np
import akg
import akg.lang.cce
import akg.backend as cce
from akg import dim
from akg.utils import kernel_exec as utils
from collections import namedtuple
from test_run.conv_utils import conv_forward_naive

secretsGenerator = secrets.SystemRandom()
def random_gaussian(size, miu=3, sigma=1):
    """ Generate random array with absolution value obeys gaussian distribution """
    if sigma <= 0:
        sys.stderr.write("Error: Expect positive sigmal for gaussian distribution. but get %f\n" % sigma)
        sys.exit(1)

    rgn = np.random.RandomState(2019)
    ret = rgn.normal(miu, sigma, size)
    for x in np.nditer(ret, op_flags=['readwrite']):
        if secretsGenerator.randint(0, 1):
            continue
        x[...] = x * -1
    return ret


def gen_data(fm_shape, w_shape, pad, stride, bias):
    IN, IC, IH, IW = fm_shape
    C0 = 16
    IC = ((IC + C0 - 1) // C0) * C0

    WN, WC, WH, WW = w_shape
    WN = ((WN + C0 - 1) // C0) * C0
    WC = ((WC + C0 - 1) // C0) * C0
    #WN = mt.ceil(WN/C0)*C0
    #WC = mt.ceil(WC/C0)*C0

    ON = IN
    OC = WN
    OH = (IH + 2 * pad - WH) // stride + 1
    OW = (IW + 2 * pad - WW) // stride + 1

    # np.random.seed(2)
    # x = ( np.random.rand(IN, IC, IH, IW) * 1.0 ).astype(np.float16, copy=False)
    # w = ( np.random.rand(WN, WC, WH, WW) - 0.5 ).astype(np.float16, copy=False)
    # b = ( np.array(np.zeros(WN)) ).astype(np.float16, copy=False)
    x = random_gaussian((IN, IC, IH, IW), miu=1, sigma=0.1).astype(np.float16)
    w = random_gaussian((WN, WC, WH, WW), miu=0.5, sigma=0.01).astype(np.float16)

    if bias:
        b = np.random.rand(WN).astype(np.float16, copy=False)
    else:
        b = (np.array(np.zeros(WN))).astype(np.float16, copy=False)

    # b = np.arange(WN).astype(np.float16, copy=False)
    # x = np.random.uniform(1, 1, size=(IN, IC, IH, IW)).astype(np.float16)
    # w = np.random.uniform(1, 1, size=(WN, WC, WH, WW)).astype(np.float16)
    # b = (np.array(np.ones(WN))).astype(np.float16, copy=False)
    # b = (np.array(np.full(WN, 9))).astype(np.float16, copy=False)

    conv_param = {'stride': stride, 'pad': pad}
    out = conv_forward_naive(x, w, b, conv_param)

    ''' transpose to 5D - NC1HWC0 '''
    feature = x.reshape(IN, IC // C0, C0, IH, IW).transpose(0, 1, 3, 4, 2).copy()
    ''' transpose to 5D - C1HWNC0 '''
    filter = w.reshape(WN, WC // C0, C0, WH, WW).transpose(1, 3, 4, 0, 2).copy()
    ''' transpose to 5D - NC1HWC0 '''
    output = out.reshape(ON, OC // C0, C0, OH, OW).transpose(0, 1, 3, 4, 2).copy()

    if fusion:
        zeros = np.full(output.shape, 0, output.dtype)
        output = np.maximum(zeros, output)

    return feature, filter, b, output


def run_conv(mod, fmap_shape, filter_shape, pad, stride, bias=False, dump_data=False):
    fmap_data, filter_data, bias_data, expect = gen_data(fmap_shape, filter_shape, pad, stride, bias)
    if dump_data:
        with open('input.bin', 'wb') as fo:
            fo.write(fmap_data.astype(np.float16, copy=False))
        with open('filter.bin', 'wb') as fo:
            fo.write(filter_data.astype(np.float16, copy=False))
        with open('bias.bin', 'wb') as fo:
            fo.write(bias_data.astype(np.float16, copy=False))
        with open('output.bin', 'wb') as fo:
            fo.write(expect.astype(np.float16, copy=False))

    # fmap_data = np.loadtxt('fuse_conv2d0_forword_data0_0.txt').reshape(fmap_shape).astype(np.float16)
    # filter_data = np.loadtxt('fuse_conv2d0_forword_kernel1_1.txt').reshape(filter_shape).astype(np.float16)
    # bias_data = np.loadtxt('fuse_conv2d0_forword_bias2_2.txt').reshape(filter_shape[0], ).astype(np.float16)

    out_data = np.full(expect.shape, 0, 'float16')

    rpc_ = utils.pandoraRpc()
    mod = rpc_.module_converter(mod)
    ctx = rpc_.gen_ctx()

    arg0 = akg.tvm.nd.array(fmap_data, ctx)
    arg1 = akg.tvm.nd.array(filter_data, ctx)
    out_arg = akg.tvm.nd.array(out_data, ctx)
    if bias:
        arg2 = akg.tvm.nd.array(bias_data, ctx)
        mod(arg0, arg1, arg2, out_arg)
    else:
        mod(arg0, arg1, out_arg)
    ctx.sync()

    # abs(output, expect) < 5*(10)^(-3) * abs(expect)
    data_len = expect.size
    try:
        actual = out_arg.asnumpy()
        # np.testing.assert_array_almost_equal(out_arg.asnumpy(), expect, 1)
        N, C1, H, W, C0 = out_data.shape
        error = 0
        count = 0
        lastErr = -2
        continueErr = 0
        maxContinue = -1
        maxEnd = 0
        partial_debug = 0
        for n in range(N):
            for c1 in range(C1):
                for h in range(H):
                    for w in range(W):
                        for c0 in range(C0):
                            a = actual[n, c1, h, w, c0]
                            b = expect[n, c1, h, w, c0]
                            if (abs(a - b) > abs(b) * 5e-03):
                                if (partial_debug and (a == 0.0)):
                                    continue

                                error += 1
                                if lastErr + 1 == count:
                                    continueErr += 1
                                else:
                                    if continueErr > maxContinue:
                                        maxContinue = continueErr
                                        maxEnd = lastErr
                                    continueErr = 1
                                lastErr = count

                                # print "count: %6d expect: %10f actual: %10f %10.2f%%"%(count, b, a, abs((b-a)/b*100))

                            count += 1
        if continueErr > maxContinue:
            maxContinue = continueErr
            maxEnd = lastErr
        # print "error num: %d/%d (%.2f%%)" %(error, count, 100.0*error/count)
        # print "longest error range: [%d, %d]" %(maxEnd - maxContinue + 1, maxEnd)
        sys.stdout.flush()
        if maxContinue >= 16:
            os._exit(-1)
        np.testing.assert_allclose(actual, expect, rtol=5e-03, equal_nan=True, verbose=True)
        # print("\n\n******************** test ok *****************\n\n")
    except BaseException as e:
        np.savetxt("actual.txt", out_arg.asnumpy().reshape(data_len))
        np.savetxt("expect.txt", expect.reshape(data_len))
        # print(str(e))


fusion = False
run_cce = True

Conv_desc = namedtuple("Conv_desc",
                       ["in_n", "in_c", "in_h", "in_w", "cout", "w_h", "w_w",
                        "pad_left", "pad_right", "pad_top", "pad_bottom",
                        "stride_h", "stride_w", "bias",
                        "cutH", "cutCo", "cutM", "cutK", "cutN", "bypass_l1"])

resnet50_workload = [
    # 00 5m53.672s (mismatch 4.03180803571%) 71.1w cycle   fp32:6m34.740s (mismatch 0.00896843112245%) 71.7w cycle
    # Conv_desc(1  , 1024 , 14  , 14  , 2048 , 1  , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 14, 2048, 64, 96, 128, True),
    # 01 0m40.072s (mismatch 4.17530293367%) 4.6w cycle    fp32:0m51.811s (mismatch 0.00398596938776%) 4.7w cycle
    # Conv_desc(1  , 1024 , 14  , 14  , 256  , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 14, 256, 208, 64, 112, True),
    # 02 1m35.565s (mismatch 4.10554846939%) 19.3w cycle   fp32:1m47.179s (mismatch 0.00398596938776%) 19.5w cycle
    # Conv_desc(1  , 1024 , 14  , 14  , 512  , 1  , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 14, 512, 49, 32, 512, True),
    # 03 0m52.330s (mismatch 4.1334502551%) 5.1w cycle     fp32:1m3.842s (mismatch 0.00298947704081%) 5.1w cycle
    # Conv_desc(1  , 128  , 28  , 28  , 128  , 3  , 3  , 1 , 1 , 1 , 1 , 1 , 1, True, 28, 128, 400, 32, 128, False),
    # 04 0m55.584s (mismatch 1.43818757972%) 3.0w cycle    fp32:1m25.181s (mismatch 0.000996492346943%) 4.3w cycle
    # Conv_desc(1  , 128  , 28  , 28  , 512  , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 28, 512, 784, 16, 32, False),
    # 05 3m15.933s (mismatch 5.7955994898%) 36.2w cycle    fp32:3m2.766s (mismatch 0.0119579081633%) 36.3w cycle
    # Conv_desc(1  , 2048 , 7   , 7   , 512  , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 7, 512, 49, 32, 512, True),
    # 06 0m40.486s (mismatch 2.0358338648%) 3.2w cycle     fp32:0m57.671s (mismatch 0.000996492346943%) 3.6w cycle
    # Conv_desc(1  , 256  , 14  , 14  , 1024 , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 14, 944, 112, 32, 240, False),
    # 07 1m12.201s (mismatch 5.70591517857%) 9.2w cycle    fp32:1m17.662s (mismatch 0.00398596938776%) 9.2w cycle
    # Conv_desc(1  , 256  , 14  , 14  , 256  , 3  , 3  , 1 , 1 , 1 , 1 , 1 , 1, True, 14, 256, 196, 64, 256, True),
    # 08 0m35.593s (mismatch 1.98999521684%) 6.2w cycle    fp32:0m41.250s (mismatch 0.000996492346943%) 6.6w cycle
    # Conv_desc(1  , 256  , 56  , 56  , 128  , 1  , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 7, 128, 252, 64, 128, False),
    # 09 0m50.020s (mismatch 1.99398118622%) 5.3w cycle    fp32:1m3.908s (mismatch 0.00398596938776%) 5.5w cycle
    # Conv_desc(1  , 256  , 56  , 56  , 64   , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 16, 64, 280, 16, 64, False),
    # 10 4m47.902s (mismatch 3.4817442602%) 30.1w cycle    fp32:6m54.725s (mismatch 0.00510702327806%) 30.6w cycle
    # Conv_desc(1  , 3    , 224 , 224 , 64   , 7  , 7  , 3 , 3 , 3 , 3 , 2 , 2, True, 65, 64, 448, 32, 64, False),
    # 11 0m38.869s(mismatch 2.81110491071%) 4.0w cycle     fp32:1m12.797s (mismatch 0.000996492346943%) 4.3w cycle
    # Conv_desc(1  , 512  , 28  , 28  , 128  , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 14, 128, 448, 16, 64, False),
    # 12 0m28.570s (mismatch 2.78419961735%) 4.4w cycle    fp32:0m37.353s (mismatch 0.00398596938776%) 4.5w cycle
    # Conv_desc(1  , 512  , 28  , 28  , 256  , 1  , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 11, 256, 98, 64, 256, False),
    # 13 3m5.186s (mismatch 2.86092952806%) 34.2w cycle    fp32:3m54.894s (mismatch 0.00398596938776%) 34.8w cycle
    # Conv_desc(1  , 512  , 7   , 7   , 2048 , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 7, 2048, 49, 16, 512, True),
    # 14 4m0.641s (mismatch 7.72879464286%) 51.0w cycle    fp32:3m37.054s (mismatch 0.00797193877551%) 51.5w cycle
    # Conv_desc(1  , 512  , 7   , 7   , 512  , 3  , 3  , 1 , 1 , 1 , 1 , 1 , 1, True, 7, 512, 49, 32, 512, True),
    # 15 1m12.292s (mismatch 1.03909239477%) 5.4W cycle    fp32:2m2.360s (mismatch 0.00124561543367%) 7.4w cycle
    # Conv_desc(1  , 64   , 56  , 56  , 256  , 1  , 1  , 0 , 0 , 0 , 0 , 1 , 1, True, 56, 256, 784, 16, 32, False),
    # 16 0m21.902s (mismatch 1.05428890306%) 1.7w cycle    fp32:0m30.347s (mismatch 0.00149473852041%) 2.2w cycle
    Conv_desc(1, 64, 56, 56, 64, 1, 1, 0, 0, 0, 0, 1, 1, True, 56, 64, 784, 16, 32, False),
    # 17 1m6.587s (mismatch 3.01289461097%) 5.1w cycle     fp32:2m8.175s (mismatch 0.0049824617347%) 5.8w cycle
    # Conv_desc(1  , 64   , 56  , 56  , 64   , 3  , 3  , 1 , 1 , 1 , 1 , 1 , 1, True, 56, 64, 336, 16, 64, False), # 1008->336
    # 18 1m19.401s (mismatch 2.01266541773%) 11.3w cycle   fp32:1m34.275s (mismatch 0.000498246173464%) 12.0w cycle
    # Conv_desc(1  , 256  , 56  , 56  , 512   , 1 , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 7, 512, 196, 64, 256, False),
    # 19 3m13.809s (mismatch 2.86690848214%) 38.0w cycle   fp32:3m30.030s (mismatch 0.00348772321429%) 38.4w cycle
    # Conv_desc(1  , 512  , 28  , 28  , 1024  , 1 , 1  , 0 , 0 , 0 , 0 , 2 , 2, True, 13, 1024, 112, 32, 512, True),
]


################
block_size = 16
conv_dtype = 'float16'


def test_CCE_Conv(fmap_shape, filter_shape, pad_, stride_,
                  tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False,
                  use_bias=False, kernel_name="quant_conv", cce_path='.'):
    # input shape (NCHW -> NC1HWC0)
    in_n, in_c, in_h, in_w = fmap_shape
    input_shape_nc1hwc0 = (in_n, in_c // block_size, in_h, in_w, block_size)
    # out_shape_nc1hwc0 = (in_n, in_c // 32, in_h, in_w, 32)
    in_n, in_c1, in_h, in_w, in_c0 = input_shape_nc1hwc0

    # kernel shape (NCHW -> NC1HWC0 -> Fractal)
    k_n, k_c, k_h, k_w = filter_shape
    kernel_shape_nc1hwc0 = (k_n, k_c // 32, k_h, k_w, 32)
    k_n, k_c1, k_h, k_w, k_c0 = kernel_shape_nc1hwc0
    kernel_shape_fractal = (k_c // 32 * k_h * k_w, k_n // 16, 16, 32)
    f_ko, f_no, f_ni, f_ki = kernel_shape_fractal

    # bias shape
    bias_shape_nc1hwc0 = (1, k_n // block_size, 1, 1, block_size)

    # padding ((padding_h, padding_w) -> (padding_top, padding_bottom, padding_left, padding_right))
    padding = (pad_[0], pad_[0], pad_[1], pad_[1])
    p_top, p_bottom, p_left, p_right = padding

    # stride (stride_h, stride_w)
    s_h, s_w = stride_

    # A placeholder (NC1HWCO)
    A = akg.tvm.placeholder(input_shape_nc1hwc0, dtype=conv_dtype, name='FMap')
    # B_placeholder (fractal)
    B = akg.tvm.placeholder(kernel_shape_fractal, dtype='int8', name='Filter')
    ScaleQ = akg.tvm.placeholder((16, ), dtype='float16', name='ScaleQ')
    OffsetQ = akg.tvm.placeholder((16, ), dtype='float16', name='OffsetQ')

    out_shape_nc1hwc0 = (in_n, in_c // 32, in_h, in_w, 32)
    q_n, q_c1, q_h, q_w, q_c0 = out_shape_nc1hwc0
    # print out_shape_nc1hwc0
    Quant = akg.tvm.compute(out_shape_nc1hwc0,
                        lambda qn, qc1, qh, qw, qc0: (A[qn, qc1 + qc0 // 16, qh, qw, qc0 % 16] * ScaleQ[0] + OffsetQ[0]).astype('int8'), name='QuantOUT', attrs={'no_inline': 1})

    if use_bias:
        bias_name = 'bias'
        bias_value = akg.tvm.placeholder(bias_shape_nc1hwc0, dtype=conv_dtype, name=bias_name)
    else:
        bias_name = 'None'

    # Create reduction variables
    kc1 = akg.tvm.reduce_axis((0, k_c1), name='kc1')
    kh = akg.tvm.reduce_axis((0, k_h), name='kh')
    kw = akg.tvm.reduce_axis((0, k_w), name='kw')
    kc0 = akg.tvm.reduce_axis((0, k_c0), name='kc0')

    out_h = (in_h + p_top + p_bottom - k_h) // (s_h) + 1
    tile_out_h = (tile_hh - k_h) // s_h + 1
    out_w = (in_w + p_left + p_right - k_w) // (s_w) + 1

    out_shape_nc1hwc0 = (in_n, k_n // block_size, out_h, out_w, block_size)
    out_n, out_c1, out_h, out_w, out_c0 = out_shape_nc1hwc0

    if (tile_coco > 0):
        c1_cut = tile_coco // block_size
    else:
        c1_cut = out_c1

    # set dim
    index = 0
    info = dim.Dim()
    if (q_c1 > 1):
        info.setdim(index=index, axis="KO", tilel1=q_c1, tilel0=q_c1)  # ko
    if (q_h > 1):
        info.setdim(index=index, axis="C1", tilel1=tile_out_h, tilel0=tile_out_h)  # c1
    if (q_w > 1):
        info.setdim(index=index, axis="C0", tilel1=q_w, tilel0=q_w)  # c0
    if (q_c0 > 1):
        info.setdim(index=index, axis="KI", tilel1=q_c0, tilel0=q_c0)  # ki

    index += 1
    if (out_c1 > 1):
        info.setdim(index=index, axis="C1", tilel1=c1_cut, tilel0=0)  # c1
    if (out_h > 1):
        info.setdim(index=index, axis="H", tilel1=tile_out_h, tilel0=0)  # h
    if (out_w > 1):
        info.setdim(index=index, axis="W", tilel1=out_w, tilel0=0)  # w
    if (out_c0 > 1):
        info.setdim(index=index, axis="C0", tilel1=out_c0, tilel0=0)  # c0
    if (in_c1 > 1):
        info.setdim(index=index, axis="KC1", tilel1=in_c1 / 2, tilel0=0)  # kc1
    if (k_h > 1):
        info.setdim(index=index, axis="KH", tilel1=k_h, tilel0=0)  # kh
    if (k_w > 1):
        info.setdim(index=index, axis="KW", tilel1=k_w, tilel0=0)  # kw
    info = str(info)

    # Compute the convolution
    output_name = "output0"
    output_bias_name = "output1"

    # print out_shape_nc1hwc0
    C = akg.tvm.compute(out_shape_nc1hwc0,
                    lambda n, c1, h, w, c0: akg.tvm.sum(
                        akg.tvm.if_then_else(akg.tvm.any((h * s_h + kh) < p_top, (h * s_h + kh) > (in_h + p_top - 1),
                                                 (w * s_w + kw) < p_left, (w * s_w + kw) > (in_w + p_left - 1)),
                                         akg.tvm.const(0.0, 'int8'),
                                         Quant[n, kc1, (h * s_h + kh - p_top), (w * s_w + kw - p_left), kc0])
                        * B[(kc1 * k_h + kh) * k_w + kw, c1, c0, kc0],
                        axis=[kc1, kh, kw, kc0]), name=output_name,
                    attrs={
                        "pragma_conv_kernel_n": k_n,
                        "pragma_conv_kernel_h": k_h,
                        "pragma_conv_kernel_w": k_w,
                        "pragma_conv_padding_top": p_top,
                        "pragma_conv_padding_bottom": p_bottom,
                        "pragma_conv_padding_left": p_left,
                        "pragma_conv_padding_right": p_right,
                        "pragma_conv_dilation_h": 1,
                        "pragma_conv_dilation_w": 1,
                        "pragma_conv_bypass_l1": 1 if bypass_l1 else 0,
                        "pragma_conv_stride_h": s_h,
                        "pragma_conv_stride_w": s_w,
                        "pragma_conv_fm_n": in_n,
                        "pragma_conv_fm_c": in_c,
                        "pragma_conv_fm_h": in_h,
                        "pragma_conv_fm_w": in_w,
                        "pragma_conv_h_cut": (h_window_cut - 1) * s_h + k_h,
                        "pragma_conv_w_cut": (in_w + p_left + p_right),
                        "pragma_conv_co_cut": c1_cut * k_c0,
                        "pragma_conv_m_cut": tile_mm,
                        "pragma_conv_k_cut": tile_kk,
                        "pragma_conv_n_cut": tile_nn,
                        "feature": Quant.op.name,
                        "filter": B.op.name,
                        "bias": bias_name,
                        "res": output_name,
                        "res_bias": output_bias_name})

    if use_bias:
        cube = akg.tvm.compute(out_shape_nc1hwc0, lambda n, c1, h, w, c0: C[n, c1, h, w, c0] + bias_value[0, c1, 0, 0, c0], name=output_bias_name)
    else:
        cube = C

    if fusion:
        # leakly relu
        negative_slope = 0.0
        slope_tmp = akg.tvm.const(negative_slope, dtype=conv_dtype)
        # negative_slope*x
        out = akg.lang.cce.vmuls(cube, slope_tmp)
        # max(x,negative_slope*x)
        out = akg.lang.cce.vmax(out, cube)
    else:
        out = cube

    # schedule
    s = akg.tvm.create_schedule(out.op)
    attrs = {}
    attrs["pragma_reschedule"] = 1
    with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True):
        if fusion:
            if use_bias:
                mod = akg.build(s, [A, B, ScaleQ, OffsetQ, bias_value, out], "cce", name=kernel_name, attrs=attrs, attrs={"dim": info}, polyhedral=True)
            else:
                mod = akg.build(s, [A, B, ScaleQ, OffsetQ, out], "cce", name=kernel_name, attrs=attrs, attrs={"dim": info}, polyhedral=True)
        else:
            if use_bias:
                mod = akg.build(s, [A, B, ScaleQ, OffsetQ, bias_value, out], "cce", name=kernel_name, attrs=attrs, attrs={"dim": info}, polyhedral=True)
            else:
                mod = akg.build(s, [A, B, ScaleQ, OffsetQ, out], "cce", name=kernel_name, attrs=attrs, attrs={"dim": info}, polyhedral=True)
    source_code = mod.imported_modules[0].get_source()
    # print(source_code)
    # utils.create_cce(kernel_name, cce_path, source_code)
    if run_cce:
        run_conv(mod, fmap_shape, filter_shape, pad_[0], stride_[0], use_bias)


if __name__ == '__main__':
    count = 0
    for conv_layer in resnet50_workload:
        if len(sys.argv) == 2 and int(sys.argv[1]) != count:
            count += 1
            continue

        print("#########Run resnet50 Testcase %d:#########", count)
        count += 1

        # no l1 tiling is needed in bypass_l1 mode
        assert(conv_layer.bypass_l1 == False or conv_layer.cout == conv_layer.cutCo)

        in_n = conv_layer.in_n
        in_c = conv_layer.in_c
        in_c = (in_c + block_size - 1) // block_size * block_size
        in_h = conv_layer.in_h
        in_w = conv_layer.in_w

        cout = conv_layer.cout
        cout = (cout + block_size - 1) // block_size * block_size
        w_h = conv_layer.w_h
        w_w = conv_layer.w_w

        pad_left = conv_layer.pad_left
        pad_right = conv_layer.pad_right
        pad_top = conv_layer.pad_top
        pad_bottom = conv_layer.pad_bottom

        stride_h = conv_layer.stride_h
        stride_w = conv_layer.stride_w

        bias = conv_layer.bias

        cutH = conv_layer.cutH
        if (cutH == in_h):
            cutH += pad_top + pad_bottom
        cutCo = conv_layer.cutCo
        cutCo = (cutCo + block_size - 1) // block_size * block_size
        cutM = conv_layer.cutM
        cutM = (cutM + block_size - 1) // block_size * block_size
        cutK = conv_layer.cutK
        cutK = (cutK + block_size - 1) // block_size * block_size
        cutN = conv_layer.cutN
        cutN = (cutN + block_size - 1) // block_size * block_size

        c0 = block_size
        c1_cut = cutCo // c0
        h_window_cut = (cutH - w_h) // stride_h + 1

        out_w = (in_w + pad_left + pad_right - w_w) // (stride_w) + 1

        kernel_name = "quant_conv_layer_" + str(in_n) + "_" + str(in_c) + "_" + str(in_h) + "_" + str(in_w) \
            + "_" + str(cout) + "_" + str(in_c) + "_" + str(w_h) + "_" + str(w_w) \
            + "_" + str(pad_top) + "_" + str(stride_h)

        # kernel_name = "conv_layer_" + str(in_n) + "_" + str(in_c) + "_" + str(in_h) + "_" + str(in_w) \
        #                       + "_" + str(cout) + "_" + str(in_c) + "_" + str(w_h) + "_" + str(w_w) \
        #                       + "_" + str(pad_top) + "_" + str(pad_left) + "_" + str(stride_h) + "_" + str(stride_w) \
        #                       + "_" + ("1" if bias else "0")

        test_CCE_Conv((in_n, in_c, in_h, in_w), (cout, in_c, w_h, w_w), (pad_top, pad_left), (stride_h, stride_w),
                      tile_hh=cutH, tile_coco=cutCo, tile_mm=cutM, tile_kk=cutK, tile_nn=cutN, bypass_l1=conv_layer.bypass_l1,
                      use_bias=bias, kernel_name=kernel_name)

        if os.path.exists("conv.cce"):
            shutil.copyfile("conv.cce", kernel_name + ".cce")