tiling_solver.cc 52.0 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/**
 *
 * Copyright 2020 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

18
#include "poly/tiling/tiling_solver.h"
19
#include "build_module.h"
C
ckey_Dou 已提交
20 21 22
namespace akg {
namespace ir {
namespace poly {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

/*
 * This function parse StorageFlatten error info into a ratio that guides the auto tiling to reduce
 * memory allocation.
 * e.g.
 *  error info : Check failed: const_size * op->type.bits() <= info->max_num_bits (5242880 vs. 2097152) :
 *               Allocation exceed bound of memory tag local.UB.
 *  ratio      : memory_size / alloc_size = (2097152 / 5242880) = 0.4, which means the total allocation
 *               size used in auto tiling shoulde reduce 0.4 times.
 */
double TilingSolver::GetNewAllocRatioWhenFlattenFail(const std::string &error_info) {
  std::vector<std::string> sub_strs;
  sub_strs = akg::common::Split(error_info, "(");
  CHECK_GE(sub_strs.size(), 2U);
  std::string tmp_str = sub_strs[2];
  sub_strs = akg::common::Split(tmp_str, " ");
  CHECK(!sub_strs.empty());
  auto alloc_bits = static_cast<double>(std::strtod(sub_strs[0].c_str(), nullptr));

  sub_strs = akg::common::Split(error_info, ")");
  CHECK_GE(sub_strs.size(), 1U);
  tmp_str = sub_strs[1];
  sub_strs = akg::common::Split(tmp_str, " ");
  CHECK(!sub_strs.empty());
  auto memory_bits = static_cast<double>(std::strtod(sub_strs.back().c_str(), nullptr));

  CHECK_NE(alloc_bits, 0);
  return memory_bits / alloc_bits;
}

/*
 * This function returns an adjust ratio that further reduces the memory allocation limit apart from
 * the default percentage reserved for auto double buffer and try to generate smaller tile sizes that
 * helps to recover from memory allocation failure such as the one in storage rewrite cce pass.
 */
double TilingSolver::GetNewAllocRatioWhenRewriteFail(int64_t memory_bits) {
  auto actual_allocs = global_attrs.GetFloatAttr(kAllocBits, 0.0);
  auto last_adjust_ratio = global_attrs.GetFloatAttr(kUBRatio, 1.0);
  auto adjust_ratio = 1.0;

  if (actual_allocs != 0) {
    std::stringstream ss;
    auto expect_allocs = memory_bits * last_adjust_ratio;
    adjust_ratio = (expect_allocs / actual_allocs);
    ss << "Adjust memory allocation ratio to " << adjust_ratio << " times and retry tiling.";
68
    global_attrs.Set(kUBRatio, air::make_const(Float(32), adjust_ratio));
69 70 71 72 73
    analyzer_.logger_.AppendLog(MICRO_TUNING, ss);
  }
  return adjust_ratio;
}

C
ckey_Dou 已提交
74
void TilingSolver::CollectMemoryLimit() {
75
  // Init memory allocation percentage.
76
  percentage_ = ALLOCATION_PERCENTAGE;
C
ckey_Dou 已提交
77 78 79
  for (auto attr : analyzer_.RootAxis()->attrs) {
    if (attr.attr_key != "MEM_RATIO") continue;
    CHECK_NE(attr.attr_value, "");
80
    percentage_ = std::strtod(attr.attr_value.c_str(), nullptr);
C
ckey_Dou 已提交
81 82 83
    break;
  }

84 85 86 87 88 89 90 91 92 93 94 95
  // Handle previous error info if storage flatten fails and adjust allocation percentage.
  auto error_info = global_attrs.GetStringAttr(kErrorInfo, "");
  if (!error_info.empty() && error_info.find("storage_flatten") != std::string::npos) {
    std::stringstream ss;
    ss << "Get Error Info! -> " << global_attrs.GetStringAttr(kErrorInfo, "");
    percentage_ = percentage_ * GetNewAllocRatioWhenFlattenFail(error_info);
    ss << "Adjust memory allocation to " << percentage_ << " of memory size and retry tiling.";
    global_attrs.Set(kErrorInfo, StringImm::make(""));
    analyzer_.logger_.AppendLog(MICRO_TUNING, ss);
  }

  // Init memory limit for each scope and reduce ratio of local.UB if storage rewrite fails previously.
C
ckey_Dou 已提交
96
  DavinciInfo &d_info = DavinciInfo::GetInstance();
97
  auto error_scope = global_attrs.GetStringAttr(kErrorScope, "");
C
ckey_Dou 已提交
98
  for (auto i = 0; i < MEM_SCOPE_BULK; ++i) {
99
    this->mem_limit_[i] = d_info.GetMemoryLimitInScope(i) * percentage_;
100 101 102 103 104
    if (i == DavinciMemScope::MEM_SCOPE_UB && error_scope == "local.UB") {
      this->mem_limit_[i] =
        std::max(static_cast<int>(this->mem_limit_[i] * GetNewAllocRatioWhenRewriteFail(this->mem_limit_[i])), 1);
      global_attrs.Set(kErrorScope, StringImm::make(""));
    }
C
ckey_Dou 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  }
}

void TilingSolver::CollectTileAxisTopDown() {
  auto CollectTileAxis = [this](TileAxis *a) {
    if (a == analyzer_.RootAxis() || a->index != this->tiling_band_) {
      return;
    }
    this->cand_.InsertAxisBack(a);
  };
  this->cand_.ResetTileAxis();
  this->analyzer_.ForEachAxisTopDown(CollectTileAxis);
  this->cand_.SortByPriority();
}

void InequalitySolver::InitTileAxis(TileLevel level) {
  tiling_mem_info_ = std::unique_ptr<TilingMemInfo>(new (std::nothrow) TilingMemInfo());
  CHECK(tiling_mem_info_) << "memory alloc fail";

  auto UpdateLevelTile = [this, level](TileAxis *axis, Expr tile) {
    if (level == LEVEL1) {
      this->cand_.UpdateL1Tile(axis, tile);
    } else {
      this->cand_.UpdateL0Tile(axis, tile);
    }
  };

  for (auto axis : this->cand_.GetTileAxis()) {
    // Step 1: Create unique tile var for each axis.
    std::string var_name = level == LEVEL1 ? "T1_" : "T0_";
    var_name += std::to_string(axis->index) + "_";
    var_name += axis->axis_type_.empty() ? std::to_string(axis->dim_axis) : axis->axis_type_;
    Var tile_var;

    // ensure unique address
    if (tiling_mem_info_->tile_var_map.find(var_name) == tiling_mem_info_->tile_var_map.end()) {
      tile_var = Var(var_name, Int(32));
      tiling_mem_info_->tile_var_map[var_name] = tile_var;
    } else {
      tile_var = tiling_mem_info_->tile_var_map[var_name];
    }
    UpdateLevelTile(axis, tile_var);

    // Step 2: Update for axes with determined tiling factor.
    TileAxis::Constraint cons = axis->GetConstConstraint(level);

    // These are two cases when tiling factor is fixed for axis with static shape:
    // 1. if tile_min == tile_extent ==> tile factor = tile_extent
    // 2. contains only one tile candidate ==> tile factor = this candidate
    if (cons.tile_extent_.as<IntImm>()->value > 0 &&
        cons.tile_min_.as<IntImm>()->value == cons.tile_extent_.as<IntImm>()->value) {
      UpdateLevelTile(axis, CastInt64ToExpr(cons.tile_extent_.as<IntImm>()->value));
    } else if (cons.cand_factor.size() == 1U) {
      UpdateLevelTile(axis, CastInt64ToExpr(cons.cand_factor[0].as<IntImm>()->value));
    }
  }
}

TileCandidate *InequalitySolver::Solve() {
  CollectMemoryLimit();

  auto tile_band_size = static_cast<int>(analyzer_.RootAxis()->children.size());
  for (auto band = 0; band < tile_band_size; ++band) {
    tiling_band_ = band;
D
dabaiji 已提交
169

C
ckey_Dou 已提交
170 171 172
    CollectTileAxisTopDown();

    InitTileAxis(LEVEL1);
D
dabaiji 已提交
173

C
ckey_Dou 已提交
174 175 176 177
    if (analyzer_.op_type_ != VECTOR_OP) {
      InitTileAxis(LEVEL0);
    }

178
    if (analyzer_.scop_info_.user_config_.GetPragmaAnalyzeReuseBuffer()) {
C
ckey_Dou 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      UpdateMemInfoWithBufReuse();
    } else {
      UpdateMemInfo();
    }

    Array<Expr> memory_constraints = CollectMemoryConstraints();

    auto tile_axes = cand_.GetTileAxis();
    for (auto i = static_cast<int>(tile_axes.size()) - 1; i >= 0; --i) {
      TileAxis *axis = tile_axes[i];
      DetermineTileFactor(axis, LEVEL1, memory_constraints);
    }
    if (analyzer_.op_type_ != VECTOR_OP) {
      for (auto i = static_cast<int>(tile_axes.size()) - 1; i >= 0; --i) {
        TileAxis *axis = tile_axes[i];
        DetermineTileFactor(axis, LEVEL0, memory_constraints);
      }
    }
  }
  return &cand_;
}

Expr InequalitySolver::GetSubstitutedExpr(const NodeRef &op) {
  const auto v = op.as<Variable>();
203
  auto var = air::Downcast<Var>(op);
C
ckey_Dou 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  Expr ret;
  if (defined_vars_.find(var) == defined_vars_.end()) {
    bool is_tile_var = false;
    for (auto it : this->cand_.tile_val_) {
      if ((v == it.second.tile_l1.as<Variable>()) || (v == it.second.tile_l0.as<Variable>())) {
        is_tile_var = true;
        break;
      }
    }
    if (!is_tile_var) {
      return ret;
    }

    ret = make_const(var.type(), 1);
    auto ScanTileVal = [this, &ret, &var](TileAxis *axis) {
      const auto l1_var = this->cand_.GetTileVal(axis).first.as<Variable>();
      const auto l0_var = this->cand_.GetTileVal(axis).second.as<Variable>();
      if (l1_var != nullptr && l1_var->name_hint == var->name_hint) {
        ret = axis->l1_constraints.tile_min_;
      } else if (l0_var != nullptr && l0_var->name_hint == var->name_hint) {
        ret = axis->l0_constraints.tile_min_;
      }
      if (ret.type() != var.type()) {
        if (ret.as<IntImm>()) {
          ret = make_const(var.type(), ret.as<IntImm>()->value);
        } else {
          ret = Cast::make(var.type(), ret);
        }
      }
    };
    this->analyzer_.ForEachAxisTopDown(ScanTileVal);
  } else if (defined_vars_[var].as<IntImm>()) {
    ret = defined_vars_[var];
  }
  return ret;
}

Expr InequalitySolver::SolveMemoryConstraint(const Array<Expr> &memory_constraints, const Var tiling_var) {
  Expr result;
  Array<Expr> cons_on_var;
  std::stringstream ss;
  ss << "Start to solve tiling_var " << tiling_var;
  analyzer_.logger_.AppendLog(DO_TILING, ss);

  for (auto mc : memory_constraints) {
    // All memory constraints are in `{Const, Var} op {Const, Var} <= Const` form,
    // e.g. 256 * T1_0_0 + 64 * floordiv((T1_0_1 + 15), 16) * 16 + 96 <= 131072.
    const auto le = mc.as<LE>();
    if (le == nullptr || !ContainVar(le->a, tiling_var)) {
      continue;
    }

    ss << "[Memory constraint]: " << mc;
    analyzer_.logger_.AppendLog(DO_TILING, ss);

    Map<Var, Expr> var_max;
    auto SubstituteOtherVar = [this, &var_max, tiling_var](const NodeRef &op) {
      const auto v = op.as<Variable>();
      if (v == nullptr || v->name_hint == tiling_var->name_hint) {
        return;
      }
265
      auto var = air::Downcast<Var>(op);
C
ckey_Dou 已提交
266 267 268 269 270
      Expr value = GetSubstitutedExpr(op);
      if (value.defined()) {
        var_max.Set(var, value);
      }
    };
271
    air::ir::PostOrderVisit(mc, SubstituteOtherVar);
C
ckey_Dou 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    mc = Substitute(mc, var_max);
    cons_on_var.push_back(CanonicalSimplify(mc));
  }

  if (!analyzer_.is_dynamic_ && cons_on_var.size() == 1U && ContainVar(cons_on_var[0], tiling_var)) {
    result = ExprSimplifier().ReduceInequality(cons_on_var[0], tiling_var, true, false);
    ss << "ReduceInequality Result: " << result;
    // When result of reduce is not like form `var <= something`, use inferbound instead.
    if (result.as<LE>() != nullptr && (result.as<LE>()->a.as<Variable>() == nullptr ||
                                       result.as<LE>()->a.as<Variable>()->name_hint != tiling_var->name_hint)) {
      result = SolveByInferBound(cons_on_var, tiling_var);
    }
  } else if (!cons_on_var.empty()) {
    result = SolveByInferBound(cons_on_var, tiling_var);
  } else {
    ss << "No constraint on tiling_var " << tiling_var;
  }
  analyzer_.logger_.AppendLog(DO_TILING, ss);
  return result;
}

Expr InequalitySolver::SolveByInferBound(const Array<Expr> &cons_on_var, const Var tiling_var) {
  std::stringstream ss;
  auto new_constraints = cons_on_var;
  analyzer_.ForEachAxisTopDown([&](TileAxis *axis) {
    if (axis == analyzer_.RootAxis()) {
      return;
    }

    new_constraints.push_back(axis->range_extent >= CastInt64ToExpr(1));
    if (axis->HasAttr("DYN_SHAPE_LIMIT")) {
      auto res = axis->GetAttrValue("DYN_SHAPE_LIMIT");
      CHECK_EQ(res.size(), 1U);
      auto range_limit = static_cast<int>(std::strtol(res[0].c_str(), nullptr, 10));
      new_constraints.push_back(axis->range_extent <= CastIntToExpr(range_limit));
    }
  });

  Expr infer_res = (tiling_var <= InferBoundOfExprWithCond(tiling_var, new_constraints).max);
  ss << "Use inferbound to solve instread. Result: " << infer_res;
  return infer_res;
}

315
std::deque<ParamInfo> DynamicShapeSolver::GetParamInfo() { return this->solver_.param_info_; }
C
ckey_Dou 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

void InequalitySolver::DetermineTileFactor(TileAxis *axis, TileLevel level, const Array<Expr> &memory_constraints) {
  if (axis->is_pragma && level == LEVEL1) {
    return;
  }

  std::stringstream ss;
  Expr l1_expr = CanonicalSimplify(cand_.GetTileVal(axis).first);
  Expr l0_expr = CanonicalSimplify(cand_.GetTileVal(axis).second);
  Expr to_tile = level == LEVEL1 ? l1_expr : l0_expr;
  TileAxis::Constraint cons = level == LEVEL1 ? axis->l1_constraints : axis->l0_constraints;

  if (axis->HasAttr("DYN_SHAPE_LIMIT")) {
    AppendShapeLimitConstraint(axis, to_tile);
  }

  if (to_tile.as<Variable>()) {
333
    Expr res = SolveMemoryConstraint(memory_constraints, air::Downcast<Var>(to_tile));
C
ckey_Dou 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    if (!res.defined()) {
      ss << "No memory constraint on " << to_tile << " for now, use maximal tile " << cons.tile_extent_;
      analyzer_.logger_.AppendLog(DO_TILING, ss);
      res = (to_tile <= cons.tile_extent_);
    }
    res = RemoveCast(Substitute(res, defined_vars_));
    ss << "Result after substitute defined vars: " << res;
    analyzer_.logger_.AppendLog(DO_TILING, ss);

    const auto le = res.as<LE>();
    CHECK(le) << "Cannot define tile range for axis " << axis->index << "_" << axis->dim_axis;

    Expr mem_constraint = CanonicalSimplify(le->b);
    Expr tile_min;
    Expr tile_range;
    Expr shape_range;
    if (level == LEVEL1) {
      shape_range = axis->range_extent;
      tile_min = axis->l1_constraints.tile_min_;
      tile_range = CanonicalSimplify(Min::make(axis->l1_constraints.tile_extent_, shape_range));
    } else {
      shape_range = l1_expr;
      tile_min = axis->l0_constraints.tile_min_;
      tile_range = CanonicalSimplify(Min::make(axis->l0_constraints.tile_extent_, shape_range));
    }

    if (analyzer_.arith_ana_.CanProve(mem_constraint <= 0)) {
      ss << "Memory limit should be positive, but get " << mem_constraint << ", use minimal tile " << tile_min;
      analyzer_.logger_.AppendLog(DO_TILING, ss);
      mem_constraint = tile_min;
    }

    Expr final_factor_expr;
    bool is_static_shape = tile_range.as<IntImm>() != nullptr;
    if (is_static_shape) {
      if (mem_constraint.as<IntImm>() == nullptr) {
        tile_success_ = false;
        analyzer_.logger_.AppendLine(DO_TILING,
                                     "[Warning] Static shape's memory limit is not const, use static tiling instead.");
        return;
      }
      int64_t final_factor = DetermineTileForStatic(axis, mem_constraint, tile_range, level);
      ss << "[Static shape final factor]: " << to_tile << " -> " << final_factor;
      analyzer_.logger_.AppendLog(DO_TILING, ss);
      final_factor_expr = CastInt64ToExpr(final_factor);
    } else {
      if (analyzer_.arith_ana_.CanProve(tile_min == tile_range)) {
381
        param_info_.push_front(ParamInfo{"LetStmt", Expr(to_tile), tile_range});
C
ckey_Dou 已提交
382
        AppendShapeLimitConstraint(axis, to_tile);
383
        defined_vars_.Set(air::Downcast<Var>(to_tile), tile_range);
C
ckey_Dou 已提交
384 385 386
        return;
      }

387
      param_info_.push_back(ParamInfo{"AttrStmt", Expr("[MemoryLimit_UB]"), to_tile <= shape_range});
C
ckey_Dou 已提交
388
      final_factor_expr = DetermineTileForDynamic(axis, mem_constraint, to_tile, shape_range, tile_range, level);
389 390
      param_info_.push_front(ParamInfo{"LetStmt", to_tile, final_factor_expr});
      param_info_.push_back(ParamInfo{"AttrStmt", Expr("[MemoryLimit_UB]"), to_tile <= final_factor_expr});
C
ckey_Dou 已提交
391 392 393 394 395
      ss << "[Dynamic shape final factor]: " << to_tile << " -> " << final_factor_expr;
      analyzer_.logger_.AppendLog(DO_TILING, ss);
    }

    CHECK(final_factor_expr.defined());
396
    defined_vars_.Set(air::Downcast<Var>(to_tile), final_factor_expr);
C
ckey_Dou 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    // We can only update const tiling factor to final dim as we will replace those var factor with prime number.
    if (const auto imm = final_factor_expr.as<IntImm>()) {
      if (level == LEVEL1) {
        cand_.UpdateL1Tile(axis, imm->value);
      } else {
        cand_.UpdateL0Tile(axis, imm->value);
      }
    }
  } else if (to_tile.as<IntImm>() == nullptr) {
    LOG(INFO) << "Tile var should be either IntImm or Variable, but found " << to_tile;
  }
}

Expr InequalitySolver::DetermineTileForDynamic(TileAxis *axis, const Expr &mem_constraint, const Expr &to_tile,
                                               const Expr &shape_range, const Expr &tile_range, TileLevel level) {
  Expr final_factor;
  std::stringstream ss;
414
  auto tile = air::Downcast<Var>(to_tile);
C
ckey_Dou 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  auto new_mem_constraint = mem_constraint;
  TileAxis::Constraint cons = level == LEVEL1 ? axis->l1_constraints : axis->l0_constraints;

  bool infer_bound_fail =
    new_mem_constraint.as<Variable>() && new_mem_constraint.as<Variable>()->name_hint == tile->name_hint;

  if (analyzer_.op_type_ != CONV_OP && infer_bound_fail) {
    LOG(WARNING) << "Result of infer max bound for var " << to_tile << " fail, apply minimal tile " << cons.tile_min_;
    final_factor = cons.tile_min_;
  } else {
    bool need_adjust_mem =
      ((analyzer_.arith_ana_.CanProve(cons.tile_mod_ > 1)) &&
       (analyzer_.arith_ana_.CanProve(new_mem_constraint % cons.tile_mod_ != 0)) && (!axis->HasAttr("DYNAMIC_SHIFT")));

    // Reduce memory limit so that mem_constraint % tile_mod == 0.
    if (need_adjust_mem) {
      if (!analyzer_.arith_ana_.CanProve(new_mem_constraint >= cons.tile_mod_)) {
        LOG(WARNING) << "Maximal memory for axis " << to_tile << " is " << new_mem_constraint << ", constraint \""
                     << new_mem_constraint << " % " << cons.tile_mod_ << " == 0\""
                     << " is invalid, final factor may not be aligned.";
      } else {
        ss << "reduce memory limit from " << new_mem_constraint;
        while (analyzer_.arith_ana_.CanProve(new_mem_constraint % cons.tile_mod_ != 0))
          new_mem_constraint = CanonicalSimplify(new_mem_constraint - 1);
        ss << " to " << new_mem_constraint << " according to mod constraint " << cons.tile_mod_;
        analyzer_.logger_.AppendLog(DO_TILING, ss);
      }
    }

444
    param_info_.push_back(ParamInfo{"AttrStmt", Expr("[MemoryLimit_UB]"), to_tile <= new_mem_constraint});
C
ckey_Dou 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

    if (!cons.cand_factor.empty()) {
      // If candidate factors are provided, final factor is set to `max(min(c1, shape), ..., min(cn, shape))`
      // where c1, ..., cn are n candidate factors.
      std::vector<Expr> min_set;
      for (auto c : cons.cand_factor) {
        min_set.emplace_back(Min::make(c, shape_range));
      }
      final_factor = min_set.back();
      min_set.pop_back();
      while (!min_set.empty()) {
        final_factor = Max::make(final_factor, min_set.back());
        min_set.pop_back();
      }
    } else {
      final_factor = CanonicalSimplify(Min::make(new_mem_constraint, tile_range));
    }
  }

  // Add forbid isolation constraint to final factor by custom cce call `FindDivisibleTilingFactor`.
  if (level == LEVEL1 && axis->forbid_iso) {
    auto max_final_factor = InferBoundOfExprWithCond(final_factor, {tile > 0, tile <= axis->range_extent}).max;
    bool need_constraint = !(max_final_factor.as<IntImm>() && max_final_factor.as<IntImm>()->value == 1);
    if (axis->HasAttr("DYN_SHAPE_LIMIT")) {
      auto shape_limit = axis->GetAttrValue("DYN_SHAPE_LIMIT");
      CHECK_EQ(shape_limit.size(), 1U);
      auto range_limit = static_cast<int>(std::strtol(shape_limit[0].c_str(), nullptr, 10));
      if (analyzer_.arith_ana_.CanProve(range_limit <= GetConstIntUpBound(max_final_factor))) {
        final_factor = axis->range_extent;
      } else {
        final_factor = Call::make(tile->type, tiling_algorithm::intrinsic::FL_find_divisible_tiling_factor,
                                  {max_final_factor, axis->range_extent}, Call::Extern);
      }
    } else if (need_constraint) {
      final_factor = Call::make(tile->type, tiling_algorithm::intrinsic::FL_find_divisible_tiling_factor,
                                {max_final_factor, axis->range_extent}, Call::Extern);
    }
  }
  return final_factor;
}

void InequalitySolver::AppendShapeLimitConstraint(TileAxis *axis, Expr to_tile) {
  if (axis->dyn_shape_limit == -1) {
    LOG(WARNING) << "It is better to set dynamic shape limit for full tile axis " << axis->range_extent;
  } else {
490 491
    param_info_.push_back(
      ParamInfo{"AttrStmt", Expr("[MemoryLimit_UB]"), axis->range_extent <= CastIntToExpr(axis->dyn_shape_limit)});
C
ckey_Dou 已提交
492 493 494 495 496 497 498 499 500 501 502 503
  }
}

int64_t InequalitySolver::DetermineTileForStatic(TileAxis *axis, const Expr &mem_constraint, const Expr &tile_range,
                                                 TileLevel level) {
  std::stringstream ss;
  auto final_factor = MIN_TILE;
  auto static_shape = tile_range.as<IntImm>()->value;
  auto static_mem_constraint = mem_constraint.as<IntImm>()->value;
  TileAxis::Constraint cons = level == LEVEL1 ? axis->l1_constraints : axis->l0_constraints;

  if (!cons.cand_factor.empty()) {
504
    for (auto max_cand : cons.cand_factor) {
C
ckey_Dou 已提交
505 506 507 508 509 510 511 512 513
      if (max_cand.as<IntImm>() == nullptr) {
        ss << "Static shape should have const candidate factor, while got " << max_cand;
        analyzer_.logger_.LogFatalAndSaveLog(ss.str());
      }

      if (max_cand.as<IntImm>()->value <= static_mem_constraint) {
        final_factor = max_cand.as<IntImm>()->value;
        ss << "--> Candidate factor " << final_factor;
        break;
514 515 516 517 518 519
      } else if (max_cand.as<IntImm>()->value * exceed_ratio_ * percentage_ < static_mem_constraint) {
        final_factor = max_cand.as<IntImm>()->value;
        exceed_ratio_ =
          exceed_ratio_ * (static_cast<double>(final_factor) / static_cast<double>(static_mem_constraint));
        ss << "--> Candidate factor " << final_factor << " (exceed ratio update to " << exceed_ratio_ << ")";
        break;
C
ckey_Dou 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
      }
    }
  } else {
    if (static_mem_constraint >= static_shape) {
      final_factor = static_shape;
    } else {
      if (cons.tile_min_.as<IntImm>() == nullptr) {
        ss << "Static shape should have const tile min, while got " << cons.tile_min_;
        analyzer_.logger_.LogFatalAndSaveLog(ss.str());
      }

      final_factor = std::max(cons.tile_min_.as<IntImm>()->value, static_mem_constraint);
      ss << "--> Init factor " << final_factor;

      auto mod_value = cons.tile_mod_.as<IntImm>() ? cons.tile_mod_.as<IntImm>()->value : 1;
535 536 537
      bool is_unaligned = (static_shape >= mod_value && final_factor % mod_value != 0);
      bool need_to_align = (final_factor > mod_value || !axis->HasAttr("VECTORIZED"));
      if (is_unaligned && need_to_align) {
C
ckey_Dou 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        final_factor = std::max(static_cast<int>(final_factor / mod_value * mod_value), 1);
        ss << "--> Mod value " << mod_value << " --> Align to mod " << final_factor;
      }

      auto tail = static_shape - (static_shape / final_factor) * final_factor;
      ss << "--> Tail " << tail;

      // When tiling factor generating tail, we need to check whether it is valid (only for vector op).
      if (level == LEVEL1 && tail > 0) {
        if (axis->forbid_iso) {
          // We use conservative strategy here to choose final factor, i.e. use divisible factor that is smaller
          // than memory limit; In the future, we may consider to choose from larger-divisible factor and
          // smaller-divisible factor;
          while (static_shape % final_factor != 0) --final_factor;
          ss << "--> Forbid isolate " << final_factor;
        } else if (final_factor % GetMaxAlignBytes(axis->data_size) != 0) {
          if (final_factor < GetMaxAlignBytes(axis->data_size)) {
            final_factor =
              GetMaxAlignBytes(axis->data_size) > static_mem_constraint ? MIN_TILE : GetMaxAlignBytes(axis->data_size);
          } else {
            while (final_factor % GetMaxAlignBytes(axis->data_size) != 0) {
              --final_factor;
            }
          }
          ss << "--> Align to (" << GetMaxAlignBytes(axis->data_size) << ") bytes " << final_factor;
        }
      }
    }

567 568
    if (analyzer_.scop_info_.user_config_.GetPragmaAnalyzeMulticore() && !analyzer_.is_dynamic_ &&
        analyzer_.op_type_ == VECTOR_OP) {
C
ckey_Dou 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
      MulticoreStrategy mc_strategy_ = MulticoreStrategy(cand_, analyzer_.logger_.GetDumpDir());
      final_factor = mc_strategy_.AdjustTilingAccordingToMulticoreConstraint(axis, final_factor);
    }
  }
  return final_factor;
}

void InequalitySolver::CalculateMemoryInBuffer(const TilingAnalyzer::BufferEntry *buf, TilingMemInfo *mem_info) {
  std::stringstream ss;
  bool this_band_buf = (buf->scope == MEM_SCOPE_GM);
  Expr buf_shape = CastInt64ToExpr(buf->size * buf->expand_size);
  bool is_l0_buf = buf->scope > MEM_SCOPE_L1;

  if (buf->scope != MEM_SCOPE_GM) {
    for (auto &axis : *(buf->tile_axis)) {
      if (axis == this->analyzer_.RootAxis() || axis->index != tiling_band_) {
        continue;
      }
      this_band_buf = true;

      // Multiply var's shape to get buffer tile shape.
      Expr tile_var = is_l0_buf ? this->cand_.tile_val_[axis].tile_l0 : this->cand_.tile_val_[axis].tile_l1;
      CHECK(tile_var.defined()) << "Tile var not defined.";

      // Use original extent for shifted axes.
      if (analyzer_.arith_ana_.CanProve(tile_var > axis->range_extent)) tile_var = axis->range_extent;

      // Make tile var align to 32 Bytes.
      tile_var = EstimateAlignment(buf, axis, tile_var);

      buf_shape *= tile_var;
    }
  }

  if (!this_band_buf) {
    return;
  }

  mem_info->live_buf[buf] = buf_shape;

  if (mem_info->live_size[buf->scope].defined()) {
    mem_info->live_size[buf->scope] = CanonicalSimplify(mem_info->live_size[buf->scope] + buf_shape);
  } else {
    mem_info->live_size[buf->scope] = buf_shape;
  }

  if (mem_info->max_live_size[buf->scope].defined()) {
    bool current_is_larger =
      ExprSimplifier().CanProveWithPosParam(mem_info->live_size[buf->scope] >= mem_info->max_live_size[buf->scope]);
    bool current_is_smaller =
      ExprSimplifier().CanProveWithPosParam(mem_info->live_size[buf->scope] < mem_info->max_live_size[buf->scope]);

    if (current_is_larger) {
622
      ss << "[Update max] current live size " << mem_info->live_size[buf->scope] << " greater than maximal size "
C
ckey_Dou 已提交
623 624 625
         << mem_info->max_live_size[buf->scope];
      mem_info->max_live_size[buf->scope] = mem_info->live_size[buf->scope];
    } else if (!current_is_smaller) {
626
      ss << "[Unknown] Can not compare current live size" << mem_info->live_size[buf->scope] << " with maximal size "
C
ckey_Dou 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
         << mem_info->max_live_size[buf->scope];
      mem_info->max_live_size[buf->scope] = CanonicalSimplify(mem_info->max_live_size[buf->scope] + buf_shape);
    }

    analyzer_.logger_.AppendLog(DO_TILING, ss);

  } else {
    mem_info->max_live_size[buf->scope] = mem_info->live_size[buf->scope];
  }
}

Expr InequalitySolver::EstimateAlignment(const TilingAnalyzer::BufferEntry *buf, TileAxis *axis, Expr tile) const {
  if (analyzer_.op_type_ != VECTOR_OP) {
    return tile;
  }

  auto GetAlignType = [axis, buf]() -> std::string {
    std::string align_type;
    for (const auto &attr : axis->attrs) {
      if (attr.attr_key.find("ALIGN") == std::string::npos) continue;
      std::string local_name = attr.attr_value + "_local_UB";
      if (buf->name.find(local_name) != std::string::npos) {
        std::vector<std::string> res = akg::common::Split(attr.attr_key, ":");
        if (res.size() == 2U) align_type = res[1];
        return align_type;
      }
    }
    return align_type;
  };

  std::string align_type = GetAlignType();
  Expr block_size = CastInt64ToExpr(GetAlignBytes(buf->align_size));
  if (align_type.find("TRANSPOSE") != std::string::npos) {
    return CanonicalSimplify(tile * block_size);
  } else if (!align_type.empty() || axis == buf->tile_axis.get()->back()) {
    return CanonicalSimplify(floordiv((tile - 1 + block_size), block_size) * block_size);
  } else {
    return tile;
  }
}

void InequalitySolver::UpdateMemInfo() {
  auto mem_info = tiling_mem_info_.get();
  CHECK(mem_info);

  auto &linear_seq = analyzer_.linear_seq_;
  for (int idx = static_cast<int>(linear_seq.size()) - 1; idx >= 0; idx--) {
    int scope_pair_offset = linear_seq[idx].scope_pair_offset;
    auto &e = linear_seq[scope_pair_offset >= 0 ? idx : idx + scope_pair_offset];

    if (e.def != nullptr && mem_info->live_buf.count(e.def) == 0) {
      CalculateMemoryInBuffer(e.def, mem_info);
    }

    for (auto ref : e.ref) {
      if (mem_info->live_buf.count(ref) > 0) {
        continue;
      }
      CalculateMemoryInBuffer(ref, mem_info);
    }

    if (scope_pair_offset >= 0) {
      for (auto alloc : e.alloc) {
        if (mem_info->live_size[alloc->scope].defined() && mem_info->live_buf[alloc].defined()) {
          mem_info->live_size[alloc->scope] -= mem_info->live_buf[alloc];
        }
        mem_info->live_buf.erase(alloc);
      }
    }
  }
}

void InequalitySolver::UpdateMemInfoWithBufReuse() {
700
  std::stringstream ss;
C
ckey_Dou 已提交
701 702 703 704 705 706 707 708 709 710 711
  auto mem_info = tiling_mem_info_.get();
  CHECK(mem_info);

  for (auto cur_time = 0; cur_time <= static_cast<int>(analyzer_.buffer_usage_timetable_.size() - 1); ++cur_time) {
    // Step 1: Release not used buffer.
    for (auto it : analyzer_.buffer_usage_timetable_) {
      auto last_use_time = it.second.second;
      if (last_use_time >= cur_time) {
        continue;
      }
      if (mem_info->live_size[it.first->scope].defined() && mem_info->live_buf[it.first].defined()) {
712
        ss << "Release buffer " << it.first->name << " with size " << mem_info->live_buf[it.first];
C
ckey_Dou 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        mem_info->live_size[it.first->scope] -= mem_info->live_buf[it.first];
      }
      mem_info->live_buf.erase(it.first);
    }
    // Step 2: Update memory for new buffer.
    for (auto it : analyzer_.buffer_usage_timetable_) {
      auto alloc_time = it.second.first;
      if (mem_info->live_buf.count(it.first) != 0) {
        continue;
      }
      if (alloc_time == cur_time) {
        CalculateMemoryInBuffer(it.first, mem_info);
      }
    }
  }
}

Array<Expr> InequalitySolver::CollectMemoryConstraints() {
  std::unordered_map<int, std::string> memory_map = {{1, "UB"}, {2, "L1"}, {3, "L0A"}, {4, "L0B"}, {5, "L0C"}};
  auto mem_info = tiling_mem_info_.get();
  Array<Expr> memory_constraints;
  for (int i = 1; i < MEM_SCOPE_BULK; ++i) {
    if (!mem_info->max_live_size[i].defined()) {
      continue;
    }

739
    Expr constraint = air::ir::CanonicalSimplify(mem_info->max_live_size[i] <= CastInt64ToExpr(mem_limit_[i]));
C
ckey_Dou 已提交
740 741 742 743 744 745 746 747
    if (analyzer_.arith_ana_.CanProve(constraint == 0)) {
      LOG(WARNING) << "Memory " << i << " exceed limit, " << mem_info->max_live_size[i] << " vs " << mem_limit_[i];
      continue;
    } else if (analyzer_.arith_ana_.CanProve(constraint == 1)) {
      continue;
    }

    memory_constraints.push_back(constraint);
748
    param_info_.push_back(ParamInfo{"AttrStmt", Expr("[MemoryLimit_" + memory_map[i] + "]"), constraint});
C
ckey_Dou 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
  }
  return memory_constraints;
}

bool InequalitySolver::ContainVar(Expr expr, Var var) {
  if (const auto v = expr.as<Variable>()) {
    return (v->name_hint == var->name_hint);
  } else if (const auto a = expr.as<Add>()) {
    return (ContainVar(a->a, var) || ContainVar(a->b, var));
  } else if (const auto s = expr.as<Sub>()) {
    return (ContainVar(s->a, var) || ContainVar(s->b, var));
  } else if (const auto m = expr.as<Mul>()) {
    return (ContainVar(m->a, var) || ContainVar(m->b, var));
  } else if (const auto d = expr.as<Div>()) {
    return (ContainVar(d->a, var) || ContainVar(d->b, var));
  } else if (const auto fd = expr.as<FloorDiv>()) {
    return (ContainVar(fd->a, var) || ContainVar(fd->b, var));
  } else if (const auto c = expr.as<Cast>()) {
    return (ContainVar(c->value, var));
  } else if (const auto le = expr.as<LE>()) {
    return (ContainVar(le->a, var) || ContainVar(le->b, var));
  }
  return false;
}

///////////////////////////////////////////////////////////

TileCandidate *DynamicShapeSolver::Solve() {
  auto result = this->solver_.Solve();
  auto tile_band_size = static_cast<int>(analyzer_.RootAxis()->children.size());
  for (auto band = 0; band < tile_band_size; ++band) {
    tiling_band_ = band;
    AppendTileConstraintInIR(result, TileLevel::LEVEL1);
    if (analyzer_.op_type_ == GEMM_OP) {
      AppendTileConstraintInIR(result, TileLevel::LEVEL0);
    }
  }
  return result;
}

void DynamicShapeSolver::AppendTileConstraintInIR(TileCandidate *cand, TileLevel level) {
  auto Append = [this, level, cand](TileAxis *axis) {
    if (axis->parent == nullptr || axis->index != this->tiling_band_) {
      return;
    }

    TileAxis::Constraint cons = level == LEVEL1 ? axis->l1_constraints : axis->l0_constraints;
    Expr tile_var = level == LEVEL1 ? cand->tile_val_[axis].tile_l1 : cand->tile_val_[axis].tile_l0;
    CHECK(tile_var.defined());
    if (analyzer_.arith_ana_.CanProve(tile_var == axis->range_extent) || tile_var.as<IntImm>() != nullptr) {
      return;
    }

    // add mod constraint attr
    if (!analyzer_.arith_ana_.CanProve(cons.tile_mod_ == 1)) {
      Expr mod_cons = (floormod(tile_var, cons.tile_mod_) == 0);
805
      this->solver_.param_info_.push_back(ParamInfo{"AttrStmt", Expr("[ModConstraint]"), mod_cons});
C
ckey_Dou 已提交
806 807 808 809 810
    }

    // add forbid isolate constraint attr
    if (axis->forbid_iso) {
      Expr iso_cons = (floormod(axis->range_extent, tile_var) == 0);
811
      this->solver_.param_info_.push_back(ParamInfo{"AttrStmt", Expr("[IsolateConstraint]"), iso_cons});
C
ckey_Dou 已提交
812 813 814 815 816 817 818 819 820
    }
  };
  analyzer_.ForEachAxisTopDown(Append);
}

///////////////////////////////////////////////////////////

TileCandidate *TraverseSolver::Solve() {
  CollectMemoryLimit();
D
dabaiji 已提交
821

C
ckey_Dou 已提交
822 823 824
  auto tile_band_size = static_cast<int>(analyzer_.RootAxis()->children.size());
  for (auto band = 0; band < tile_band_size; ++band) {
    tiling_band_ = band;
D
dabaiji 已提交
825

C
ckey_Dou 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    CollectTileAxisTopDown();

    // tile all axis top down
    for (TileAxis *axis : cand_.GetTileAxis()) {
      std::unique_ptr<TileInfo> info(new (std::nothrow) TileInfo(axis, LEVEL1, band));
      CHECK(info) << "memory alloc fail";
      if (IsTilable(info.get())) {
        if (DoTiling(info.get())) break;
      }
    }

    if (analyzer_.op_type_ == GEMM_OP) {
      for (TileAxis *axis : cand_.GetTileAxis()) {
        std::unique_ptr<TileInfo> info(new (std::nothrow) TileInfo(axis, LEVEL0, band));
        CHECK(info) << "memory alloc fail";
        if (IsTilable(info.get())) {
          if (DoTiling(info.get())) break;
        }
      }

      std::vector<TileAxis *> ko_axes = this->analyzer_.GetAxesOfAttr(AttrInfo{"GEMM", "ko"});
      std::vector<TileAxis *> mo_axes = this->analyzer_.GetAxesOfAttr(AttrInfo{"GEMM", "mo"});
      std::vector<TileAxis *> no_axes = this->analyzer_.GetAxesOfAttr(AttrInfo{"GEMM", "no"});

      auto MakeL1L0Consistency = [this](const std::vector<TileAxis *> &axes) {
        if (axes.size() == 1U) {
          cand_.UpdateConstTile(axes[0], this->cand_.GetConstTileVal(axes[0]).second);
        }
      };

      MakeL1L0Consistency(ko_axes);
      MakeL1L0Consistency(mo_axes);
      MakeL1L0Consistency(no_axes);
    }
  }

  if (analyzer_.op_type_ == CONV_OP) {
863
    if (analyzer_.scop_info_.cube_info_.IsConvBackpropFilter()) {
C
ckey_Dou 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
      AppendConvBackpropPragma();
    } else {
      AppendConvPragma();
    }
  }
  return &cand_;
}

bool TraverseSolver::IsTilable(TileInfo *info) {
  TileAxis *axis = info->axis;
  TileLevel level = info->level;
  int64_t deviation = EXCEED_MEM_CODE;

  // Step 1: Probe by min tile, to verify memory.
  int min_tile;
  TileAxis::Constraint cons = axis->GetConstConstraint(level);
  int const_extent = axis->GetConstExtent();
  if (const_extent == -1) {
    return false;
  }

  if (level == LEVEL1) {
886 887 888 889
    bool use_tile_min = (info->axis->forbid_iso && const_extent % cons.tile_mod_.as<IntImm>()->value != 0) ||
                        (cons.tile_min_.as<IntImm>()->value == MIN_TILE) || (axis->HasAttr("VECTORIZED")) ||
                        (cons.tile_min_.as<IntImm>()->value > cons.tile_mod_.as<IntImm>()->value);
    if (use_tile_min) {
C
ckey_Dou 已提交
890
      min_tile = cons.tile_min_.as<IntImm>()->value;
891 892
    } else {
      min_tile = cons.tile_mod_.as<IntImm>()->value;
C
ckey_Dou 已提交
893
    }
894

C
ckey_Dou 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    if (axis->range_min > min_tile) {
      min_tile = axis->range_min;
    }

    cand_.UpdateConstTile(axis, min_tile);
  } else {
    if (cand_.GetConstTileVal(info->axis).first == TileVarId::UNDEFINE) {
      analyzer_.logger_.LogFatalAndSaveLog("Should tile L1 first!");
    }

    min_tile = cons.tile_min_.as<IntImm>()->value;

    if (min_tile < cons.tile_mod_.as<IntImm>()->value) {
      min_tile = cons.tile_mod_.as<IntImm>()->value;
    }

    cand_.UpdateConstTile(axis, cand_.GetConstTileVal(axis).first, min_tile);
  }
  info->min_tile = min_tile;

  // Step 2: Set all fix axis before verify memory.
  cand_.UpdateFixTileAxis(level);

  bool mem_ok = MemoryVerify(level, info->band, &deviation);
  std::stringstream ss;
  ss << "Begin ::: mem ok = " << mem_ok << " dev " << deviation;
  analyzer_.logger_.AppendLog(DO_TILING, ss);
  info->deviation = deviation;
  return mem_ok;
}

bool TraverseSolver::MemoryVerify(TileLevel level, int band, int64_t *deviation) {
  std::vector<int64_t> original_size;
  std::vector<int64_t> expanded_size;
  int dev = 0;
  for (int i = 0; i < MEM_SCOPE_BULK; ++i) {
    auto scope = static_cast<DavinciMemScope>(i);
    std::pair<int64_t, int64_t> mem_pair = cand_.MemInfer(scope, band);
    int64_t origin = mem_pair.first;
    int64_t expand = mem_pair.second;
    int dev_a = EXCEED_MEM_CODE;
    if (origin <= mem_limit_[scope]) {
      dev_a = mem_limit_[scope] - origin;
    }
    if (level == LEVEL0 && i > MEM_SCOPE_UB) {
      if (dev_a != EXCEED_MEM_CODE) dev += dev_a;
    } else if (scope == MEM_SCOPE_UB) {
      dev += dev_a;
    }
    original_size.emplace_back(origin);
    expanded_size.emplace_back(expand);
  }
  if (deviation) {
    *deviation = dev;
  }

  bool L1_valid = (expanded_size[MEM_SCOPE_L1] <= mem_limit_[MEM_SCOPE_L1]);
  bool UB_valid = (expanded_size[MEM_SCOPE_UB] <= mem_limit_[MEM_SCOPE_UB]);
  bool L0A_valid = (expanded_size[MEM_SCOPE_L0A] <= mem_limit_[MEM_SCOPE_L0A]);
  bool L0B_valid = (expanded_size[MEM_SCOPE_L0B] <= mem_limit_[MEM_SCOPE_L0B]);
  bool L0C_valid = (expanded_size[MEM_SCOPE_L0C] <= mem_limit_[MEM_SCOPE_L0C]);
956
  bool cut_reduce = analyzer_.scop_info_.cube_info_.IsConvBackpropFilter();
C
ckey_Dou 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

  std::vector<TileAxis *> batch_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "N"});
  std::vector<TileAxis *> h_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "H"});
  std::vector<TileAxis *> w_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "W"});

  if (cut_reduce) {
    cut_reduce = ((batch_axes.size() == 1U && batch_axes[0]->GetConstExtent() > 1) ||
                  (h_axes.size() == 1U && h_axes[0]->GetConstExtent() > 1) ||
                  (w_axes.size() == 1U && w_axes[0]->GetConstExtent() > 1));
  }
  if ((!cut_reduce && level == LEVEL1 && (!L1_valid || (!UB_valid && analyzer_.op_type_ == VECTOR_OP))) ||
      ((cut_reduce || level == LEVEL0) && (!L0A_valid || !L0B_valid || !L0C_valid))) {
    return false;
  }
  return true;
}

bool TraverseSolver::DoTiling(const TileInfo *info) {
  bool success = false;
  TileAxis *axis = info->axis;
  int64_t deviation = info->deviation;
  int64_t best_val = TileVarId::UNDEFINE;
  int64_t best_no_iso_val = TileVarId::UNDEFINE;

  if (cand_.SpaceVerify(axis, info->level, info->band)) {
    best_val = info->min_tile;
    best_no_iso_val = info->min_tile;
    cand_.UpdateConstTile(axis, info->min_tile);
  }

  int64_t best_devs = deviation;
  int64_t best_no_iso_devs = deviation;
989 990
  int64_t balance_factor =
    analyzer_.scop_info_.user_config_.GetPragmaAllowTailTiling() ? 1 : GetMaxAlignBytes(axis->data_size);
C
ckey_Dou 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

  TileAxis::Constraint cons = axis->GetConstConstraint(info->level);
  CHECK_GT(cons.tile_extent_.as<IntImm>()->value, 0) << "Static shape's L1 max factor should be positive integer";
  int64_t init = info->min_tile;
  int64_t dst = info->level == LEVEL1 ? cons.tile_extent_.as<IntImm>()->value : this->cand_.GetConstTileVal(axis).first;

  int64_t mod = cons.tile_mod_.as<IntImm>()->value;
  bool check_mod = dst >= mod;
  if (axis->forbid_iso) check_mod = (dst % mod == 0);

  std::stringstream ss;
  ss << "start to tile from " << init << " to " << dst;
  analyzer_.logger_.AppendLog(DO_TILING, ss);
  for (int64_t t = init; t <= dst; ++t) {
    if ((axis->forbid_iso && dst % t != 0) || (check_mod && t % mod != 0)) {
      continue;
    }
    if (info->level == LEVEL1) {
      cand_.UpdateConstTile(axis, t);
    } else {
      cand_.UpdateConstTile(axis, cand_.GetConstTileVal(axis).first, t);
    }

    if (!cand_.SpaceVerify(axis, info->level, info->band)) continue;
    bool mem_ok = MemoryVerify(info->level, info->band, &deviation);

    if (deviation < 0) {
      ss << "factor " << t << " exceed memory, exit";
      analyzer_.logger_.AppendLog(DO_TILING, ss);
      break;
    }

    if (!mem_ok) continue;
    success = true;
1025 1026
    auto tail = dst % t;
    if (tail == 0) {
C
ckey_Dou 已提交
1027 1028 1029 1030 1031 1032
      if (deviation > best_no_iso_devs) continue;
      ss << "factor " << t << " has " << deviation << " deviation, update to no isolate factor";
      best_no_iso_val = t;
      best_no_iso_devs = deviation;
    } else {
      if (deviation > best_devs) continue;
1033
      if (analyzer_.scop_info_.user_config_.GetPragmaAllowTailTiling() && tail < GetMaxAlignBytes(axis->data_size)) {
1034 1035
        ss << "factor " << t << " has " << tail << " tail that may disable multicore, skip.";
        continue;
C
ckey_Dou 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
      }
      ss << "factor " << t << " has " << deviation << " deviation, update to isolate factor";
      best_val = t;
      best_devs = deviation;
    }
    analyzer_.logger_.AppendLog(DO_TILING, ss);
  }

  int64_t final_factor = (axis->forbid_iso || best_no_iso_val * balance_factor > best_val) ? best_no_iso_val : best_val;
  final_factor = PostprocessFinalFactor(final_factor, axis);
  if (info->level == LEVEL1) {
    cand_.UpdateConstTile(axis, final_factor);
  } else {
    cand_.UpdateConstTile(axis, cand_.GetConstTileVal(axis).first, final_factor);
  }
  return success;
}

int64_t TraverseSolver::PostprocessFinalFactor(int64_t final_factor, TileAxis *axis) {
  auto processed = final_factor;
  if (processed == TileVarId::UNDEFINE) {
    processed = MIN_TILE;
  }

1060 1061
  if (analyzer_.scop_info_.user_config_.GetPragmaAnalyzeMulticore() && !analyzer_.is_dynamic_ &&
      analyzer_.op_type_ == VECTOR_OP) {
C
ckey_Dou 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    MulticoreStrategy mc_strategy_ = MulticoreStrategy(cand_, analyzer_.logger_.GetDumpDir());
    processed = mc_strategy_.AdjustTilingAccordingToMulticoreConstraint(axis, processed);
  }
  std::stringstream ss;
  ss << "final factor " << processed;
  analyzer_.logger_.AppendLog(DO_TILING, ss);
  return processed;
}

void TraverseSolver::AppendConvPragma() {
  Expr no = CastIntToExpr(1);
  Expr M = CastIntToExpr(1);
  Expr ko = CastIntToExpr(1);
  Expr c_cut = CastIntToExpr(16);
  Expr kh_cut = CastIntToExpr(1);
  Expr kw_cut = CastIntToExpr(1);
  std::vector<TileAxis *> c_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "C1"});
  if (c_axes.size() == 1U) {
    c_cut *= cand_.GetTileVal(c_axes[0]).first;
    no *= cand_.GetTileVal(c_axes[0]).first;
  } else {
    c_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "C1_in_out"});
    if (c_axes.size() == 1U) {
      c_cut *= cand_.GetTileVal(c_axes[0]).first;
      no *= cand_.GetTileVal(c_axes[0]).first;
      ko *= cand_.GetTileVal(c_axes[0]).first;
    }
  }
  Expr tile_out_h = 1;
  std::vector<TileAxis *> h_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "H"});
  if (h_axes.size() == 1U) {
    tile_out_h *= cand_.GetTileVal(h_axes[0]).first;
    M *= cand_.GetTileVal(h_axes[0]).first;
  }
  Expr tile_out_w = 1;
  std::vector<TileAxis *> w_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "W"});
  if (w_axes.size() == 1U) {
    tile_out_w *= cand_.GetTileVal(w_axes[0]).first;
    M *= cand_.GetTileVal(w_axes[0]).first;
  }
  std::vector<TileAxis *> kc_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "C1_in"});
  if (kc_axes.size() == 1U) {
    ko *= cand_.GetTileVal(kc_axes[0]).first;
  }
  std::vector<TileAxis *> kh_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "kh"});
  if (kh_axes.size() == 1U) {
    ko *= cand_.GetTileVal(kh_axes[0]).first;
    kh_cut *= cand_.GetTileVal(kh_axes[0]).first;
  }
  std::vector<TileAxis *> kw_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "kw"});
  if (kw_axes.size() == 1U) {
    ko *= cand_.GetTileVal(kw_axes[0]).first;
    kw_cut *= cand_.GetTileVal(kw_axes[0]).first;
  }
  CHECK(M.defined());
  M = CanonicalSimplify((floordiv((M - 1 + CUBE_UNIT), CUBE_UNIT)) * CUBE_UNIT);
  Expr mo = CanonicalSimplify(floordiv(M, CUBE_UNIT));
  CreateSpecgemmTileAxis(mo, no, ko, false);
  this->cand_.SetBatchAxis(spec_tile_axis_);
  if (analyzer_.is_dynamic_) {
    cand_.InitTileAxis(LEVEL0);
  } else {
    for (TileAxis *axis : this->cand_.GetTileAxis()) {
      std::unique_ptr<TileInfo> info(new (std::nothrow) TileInfo(axis, LEVEL0, 0));
      CHECK(info) << "memory alloc fail";
      if (IsTilable(info.get())) {
        static_cast<void>(DoTiling(info.get()));
      }
    }
  }
  Expr cin_cut;
  Expr batch_cut;
  CreateConvPragma(c_cut, tile_out_h, tile_out_w, kh_cut, kw_cut, cin_cut, batch_cut);
}

void TraverseSolver::AppendConvBackpropPragma() {
  Expr no = 1;
  Expr mo = 1;
  Expr ko = 1;
  Expr cin_cut = 16;
  Expr co_cut = 16;
  Expr batch_cut = 1;
  Expr kh_cut = 1;
  Expr kw_cut = 1;
  bool cut_reduce = false;
1147
  air::arith::Analyzer arith_ana;
C
ckey_Dou 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  std::vector<TileAxis *> batch_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "N"});
  if (batch_axes.size() == 1U) {
    batch_cut *= cand_.GetTileVal(batch_axes[0]).first;
    cut_reduce = cut_reduce || arith_ana.CanProve(batch_cut < batch_axes[0]->range_extent);
    ko *= cand_.GetTileVal(batch_axes[0]).first;
  }
  Expr tile_out_h = 1;
  std::vector<TileAxis *> h_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "H"});
  if (h_axes.size() == 1U) {
    tile_out_h *= cand_.GetTileVal(h_axes[0]).first;
    cut_reduce = cut_reduce || arith_ana.CanProve(tile_out_h < h_axes[0]->range_extent);
    ko *= cand_.GetTileVal(h_axes[0]).first;
  }
  Expr tile_out_w = 1;
  std::vector<TileAxis *> w_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "W"});
  if (w_axes.size() == 1U) {
    tile_out_w *= cand_.GetTileVal(w_axes[0]).first;
    cut_reduce = cut_reduce || arith_ana.CanProve(tile_out_w < h_axes[0]->range_extent);
    ko *= cand_.GetTileVal(w_axes[0]).first;
  }
  std::vector<TileAxis *> kc_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "C1_in"});
  if (kc_axes.size() == 1U) {
    co_cut *= cand_.GetTileVal(kc_axes[0]).first;
    mo *= cand_.GetTileVal(kc_axes[0]).first;
  }
  std::vector<TileAxis *> kh_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "kh"});
  if (kh_axes.size() == 1U) {
    ko *= cand_.GetTileVal(kh_axes[0]).first;
    no *= cand_.GetTileVal(kh_axes[0]).first;
    kh_cut *= cand_.GetTileVal(kh_axes[0]).first;
  }
  std::vector<TileAxis *> kw_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "kw"});
  if (kw_axes.size() == 1U) {
    ko *= cand_.GetTileVal(kw_axes[0]).first;
    no *= cand_.GetTileVal(kw_axes[0]).first;
    kw_cut *= cand_.GetTileVal(kw_axes[0]).first;
  }
  std::vector<TileAxis *> co_axes = analyzer_.GetAxesOfAttr(AttrInfo{"CONV", "C1_out"});
  if (co_axes.size() == 1U) {
    cin_cut *= cand_.GetTileVal(co_axes[0]).first;
    no *= cand_.GetTileVal(co_axes[0]).first;
  }

  CreateSpecgemmTileAxis(mo, no, ko, cut_reduce);
  this->cand_.SetBatchAxis(spec_tile_axis_);
  if (analyzer_.is_dynamic_) {
    cand_.InitTileAxis(LEVEL0);
  } else {
    for (TileAxis *axis : this->cand_.GetTileAxis()) {
      std::unique_ptr<TileInfo> info(new (std::nothrow) TileInfo(axis, LEVEL0, 0));
      CHECK(info) << "memory alloc fail";
      if (IsTilable(info.get())) {
        static_cast<void>(DoTiling(info.get()));
      }
    }
  }
  CreateConvPragma(co_cut, tile_out_h, tile_out_w, kh_cut, kw_cut, cin_cut, batch_cut);
}

void TraverseSolver::RestrainConvBackInputTileK(TileAxis *k_axis) const {
1208
  std::unordered_map<std::string, Expr> conv_info = analyzer_.scop_info_.cube_info_.GetConvInfoForTiling();
C
ckey_Dou 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
  CHECK(conv_info.find(ATTR_CONV_KERNEL_H) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_KERNEL_W) != conv_info.end());
  Expr k_w = conv_info[ATTR_CONV_KERNEL_W];
  Expr k_h = conv_info[ATTR_CONV_KERNEL_H];
  Expr k_mod = k_h * k_w;
  k_axis->TileRestrainMod(k_mod, LEVEL0);
}

void TraverseSolver::CreateSpecgemmTileAxis(Expr mo, Expr no, Expr ko, bool cut_reduce) {
  TileAxis *mo_axis = GeneratePragmaAxes(std::move(mo), ATTR_CONV_TILE_M, false);
  TileAxis *no_axis = GeneratePragmaAxes(std::move(no), ATTR_CONV_TILE_N, false);
  TileAxis *ko_axis = GeneratePragmaAxes(std::move(ko), ATTR_CONV_TILE_K, false);
  TileAxis *mi_axis = GeneratePragmaAxes(CUBE_UNIT, ATTR_CONV_M_INNER, true);
  TileAxis *ni_axis = GeneratePragmaAxes(CUBE_UNIT, ATTR_CONV_N_INNER, true);
  TileAxis *ki_axis = GeneratePragmaAxes(CUBE_UNIT, ATTR_CONV_K_INNER, true);
  if (cut_reduce) {
    mo_axis->TileRestrainEntire(LEVEL0);
    no_axis->TileRestrainEntire(LEVEL0);
  }
1228
  if (analyzer_.scop_info_.cube_info_.IsConvBackpropInput()) {
C
ckey_Dou 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    RestrainConvBackInputTileK(ko_axis);
  }
  // Append axes to corresponding buffers.
  std::unordered_map<std::string, std::vector<TileAxis *>> spec_map = {
    {"L0A", {mo_axis, mi_axis, ko_axis, ki_axis}},
    {"L0B", {no_axis, ni_axis, ko_axis, ki_axis}},
    {"L0C", {mo_axis, mi_axis, no_axis, ni_axis}},
  };
  auto append_axis = [&spec_map](TilingAnalyzer::BufferEntry *buf) {
    if (buf == nullptr) return;
    for (const auto &it : spec_map) {
      std::string key = it.first;
      if (buf->name.find(key) != std::string::npos) {
        std::vector<TileAxis *> axes = it.second;
        Expr shape;
        for (auto a : axes) {
          CHECK(a);
          buf->tile_axis->emplace_back(a);
          if (shape.defined())
            shape *= a->range_extent;
          else
            shape = a->range_extent;
        }
        buf->shape = shape;
      }
    }
  };
  std::unordered_set<TilingAnalyzer::BufferEntry *> L0Buffer;
  auto process = [&L0Buffer](TilingAnalyzer::BufferEntry *buf) {
    if (buf == nullptr || buf->name.find("L0") == std::string::npos) return;
    buf->tile_axis->clear();
    buf->shape = 1;
    L0Buffer.insert(buf);
  };
  for (const auto &stmt : analyzer_.linear_seq_) {
    process(stmt.def);
    for (auto b : stmt.ref) process(b);
    for (auto b : stmt.alloc) process(b);
  }
  for (auto buf : L0Buffer) append_axis(buf);
}

void TraverseSolver::CreateConvPragma(const Expr &co_cut, Expr tile_out_h, Expr tile_out_w, Expr kh_cut, Expr kw_cut,
                                      Expr ci_cut, const Expr &batch_cut) {
1273
  std::unordered_map<std::string, Expr> conv_info = analyzer_.scop_info_.cube_info_.GetConvInfoForTiling();
C
ckey_Dou 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
  CHECK(conv_info.find(ATTR_CONV_STRIDE_H) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_DILATION_H) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_KERNEL_H) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_STRIDE_W) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_DILATION_W) != conv_info.end());
  CHECK(conv_info.find(ATTR_CONV_KERNEL_W) != conv_info.end());

  Expr s_h = conv_info[ATTR_CONV_STRIDE_H];
  Expr s_w = conv_info[ATTR_CONV_STRIDE_W];
  Expr k_h = conv_info[ATTR_CONV_KERNEL_H];
  Expr k_w = conv_info[ATTR_CONV_KERNEL_W];
  Expr d_h = conv_info[ATTR_CONV_DILATION_H];
  Expr d_w = conv_info[ATTR_CONV_DILATION_W];
  Expr k_h_d = (k_h - 1) * d_h + 1;
  Expr k_w_d = (k_w - 1) * d_w + 1;
  Expr h_cut = (tile_out_h - 1) * s_h + k_h_d;
  Expr w_cut = (tile_out_w - 1) * s_w + k_w_d;

  TileAxis *pragma_cout = GeneratePragmaAxes(co_cut, ATTR_CONV_TILE_CO, true);
  TileAxis *pragma_h = GeneratePragmaAxes(h_cut, ATTR_CONV_TILE_H, true);
  TileAxis *pragma_w = GeneratePragmaAxes(w_cut, ATTR_CONV_TILE_W, true);
  TileAxis *pragma_kh = GeneratePragmaAxes(kh_cut, ATTR_CONV_TILE_KH, true);
  TileAxis *pragma_kw = GeneratePragmaAxes(kw_cut, ATTR_CONV_TILE_KW, true);

  cand_.UpdateTile(pragma_cout, co_cut, co_cut);
  cand_.UpdateTile(pragma_h, h_cut, h_cut);
  cand_.UpdateTile(pragma_w, w_cut, w_cut);
  cand_.UpdateTile(pragma_kh, kh_cut, kh_cut);
  cand_.UpdateTile(pragma_kw, kw_cut, kw_cut);

  // Channel-in cut and batch cut pragma are used in conv backprop filter.
  if (ci_cut.defined()) {
    TileAxis *pragma_cin = GeneratePragmaAxes(ci_cut, ATTR_CONV_TILE_CIN, true);
    cand_.UpdateTile(pragma_cin, ci_cut, ci_cut);
  }
  if (batch_cut.defined()) {
    TileAxis *pragma_b = GeneratePragmaAxes(batch_cut, ATTR_CONV_TILE_B, true);
    cand_.UpdateTile(pragma_b, batch_cut, batch_cut);
  }
}

TileAxis *TraverseSolver::GeneratePragmaAxes(const Expr &size, const std::string &type, bool is_pragma) {
  std::unique_ptr<TileAxis> axis(new (std::nothrow) TileAxis(size, size, type, &this->analyzer_, is_pragma));
  CHECK(axis) << "memory alloc fail";
  analyzer_.RootAxis()->children.emplace_back(std::move(axis));
  TileAxis *a = analyzer_.RootAxis()->children.back().get();
  spec_tile_axis_.emplace_back(a);
  this->cand_.InsertAxisBack(a);
  return a;
}
std::vector<TileAxis *> TraverseSolver::GetSpecTileAxis() { return this->spec_tile_axis_; }

}  // namespace poly
}  // namespace ir
}  // namespace akg