sink_c0.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/**
 * Copyright 2020 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "sink_c0.h"

namespace akg {
namespace ir {
namespace poly {

bool SinkC0::FindC0Schedule(const isl::pw_aff_list &paList) {
  for (unsigned int upaIdx = 0; upaIdx < paList.size(); ++upaIdx) {
    isl::pw_aff pa = paList.get_at(upaIdx);
    int64_t inDimSize = isl_pw_aff_dim(pa.get(), isl_dim_in);
    CHECK_NE(inDimSize, -1);
    const char *lastInDim = isl_pw_aff_get_dim_name(pa.get(), isl_dim_in, inDimSize - 1);
    if (lastInDim == nullptr) {
      continue;
    }
    std::string lastAxis = lastInDim;
    // pw_aff { S_4[n, c1, kh, oh, c0] -> [(n)] }
    // to do use isl api to mark schedule axis
    std::string pwAffStr = pa.to_str();
    std::size_t arrowPos = pwAffStr.find("->");
    if (arrowPos == std::string::npos) {
      continue;
    }
    std::string rang = pwAffStr.substr(arrowPos + 2, pwAffStr.size() - (arrowPos + 2));
    std::size_t leftBracket = rang.find("(");
    std::size_t rightBracket = rang.find(")");
    if ((leftBracket == std::string::npos) || (rightBracket == std::string::npos) ||
        (rightBracket <= leftBracket + 1)) {
      continue;
    }
    std::string scheduleAxis = rang.substr(leftBracket + 1, rightBracket - leftBracket - 1);
    if (lastAxis == scheduleAxis) {
      // lastIdxSchedule[i] = true;
      // findC0Schedule = true;
      // break;
      return true;
    }
  }
  return false;
}

void SinkC0::ExchangeCoincident(std::vector<int> &coincident, const isl::schedule_node &node,
                                const std::unordered_map<int, bool> lastIdxSchedule, const int &n) {
  // save coincident value for this band
  std::vector<int> coincidentOld;
  for (int i = 0; i < n; ++i) {
    coincidentOld.push_back(node.as<isl::schedule_node_band>().member_get_coincident(i));
  }

  // exchange last axis coincident to last position
  for (int i = 0; i < n; ++i) {
    if (lastIdxSchedule.count(i) > 0) {
      continue;
    }
    coincident.push_back(coincidentOld[i]);
  }

  for (auto item : lastIdxSchedule) {
    CHECK_GE(item.first, 0) << "index of coincident can not be negative: " << item.first;
    coincident.push_back(coincidentOld[item.first]);
  }
}

/* *****************************************************
 * Initialization part:
 * get partial_schedule info and union_pw_aff_list from band node
 * partial_schedule is a multi_union_pw_aff as follows:
 * [
    { S_4[n, c1, kh, oh, c0] -> [(n)]; S_3[n, c1, oh, ow, c0] -> [(n)]; S_5[n, c1, kh, oh, ow, c0] -> [(n)]; S_6[n,
c1, kh, kw, oh, ow, c0] -> [(n)] }, { S_4[n, c1, kh, oh, c0] -> [(c1)]; S_3[n, c1, oh, ow, c0] -> [(c1)]; S_5[n, c1, kh,
oh, ow, c0] -> [(c1)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(c1)] }, { S_4[n, c1, kh, oh, c0] -> [(oh)]; S_3[n, c1, oh,
ow, c0] -> [(oh)]; S_5[n, c1, kh, oh, ow, c0] -> [(oh)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(oh)] }, { S_4[n, c1, kh,
oh, c0] -> [(0)]; S_3[n, c1, oh, ow, c0] -> [(ow)]; S_5[n, c1, kh, oh, ow, c0] -> [(1 + ow)]; S_6[n, c1, kh, kw, oh, ow,
c0] -> [(ow)] }, { S_4[n, c1, kh, oh, c0] -> [(c0)]; S_3[n, c1, oh, ow, c0] -> [(c0)]; S_5[n, c1, kh, oh, ow, c0] ->
[(c0)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(c0)] }, { S_4[n, c1, kh, oh, c0] -> [(kh)]; S_3[n, c1, oh, ow, c0] -> [(0)];
S_5[n, c1, kh, oh, ow, c0] -> [(kh)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(kh)] }, { S_4[n, c1, kh, oh, c0] -> [(0)];
S_3[n, c1, oh, ow, c0] -> [(0)]; S_5[n, c1, kh, oh, ow, c0] -> [(0)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(-kw)] }
   ]
 * Is union_pw_aff_list(upal) the other form of multi_union_pw_aff ? and it can not print in LOG(INFO)
 * but we need it during update, at least we make a new multi_union_pw_aff from union_pw_aff_list
 * and add it to the band node, shown in the following pseudo-code
 * isl::union_pw_aff_list upal = isl::union_pw_aff_list();
 * ... ...
 * update strategy of upal ...
 * ... ...
 * isl::multi_union_pw_aff mupa = isl::multi_union_pw_aff(partial_schedule.get_space(), upal);
 * node = node.del();
 * node = node.insert_partial_schedule(mupa);
 *
 * The update strategy of SinkC0 is moving the schedule of axis of C0 with every statement
 * to the end of the multi_union_pw_aff, the purpose result is shown in the following:
 *
[
{ S_4[n, c1, kh, oh, c0] -> [(n)]; S_3[n, c1, oh, ow, c0] -> [(n)]; S_5[n, c1, kh, oh, ow, c0] -> [(n)]; S_6[n, c1, kh,
kw, oh, ow, c0] -> [(n)] }, { S_4[n, c1, kh, oh, c0] -> [(c1)]; S_3[n, c1, oh, ow, c0] -> [(c1)]; S_5[n, c1, kh, oh, ow,
c0] -> [(c1)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(c1)] }, { S_4[n, c1, kh, oh, c0] -> [(oh)]; S_3[n, c1, oh, ow, c0] ->
[(oh)]; S_5[n, c1, kh, oh, ow, c0] -> [(oh)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(oh)] }, { S_4[n, c1, kh, oh, c0] ->
[(0)]; S_3[n, c1, oh, ow, c0] -> [(ow)]; S_5[n, c1, kh, oh, ow, c0] -> [(1 + ow)]; S_6[n, c1, kh, kw, oh, ow, c0] ->
[(ow)] }, del { S_4[n, c1, kh, oh, c0] -> [(c0)]; S_3[n, c1, oh, ow, c0] -> [(c0)]; S_5[n, c1, kh, oh, ow, c0] ->
[(c0)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(c0)] }, |  { S_4[n, c1, kh, oh, c0] -> [(kh)]; S_3[n, c1, oh, ow, c0] ->
[(0)]; S_5[n, c1, kh, oh, ow, c0] -> [(kh)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(kh)] }, v  { S_4[n, c1, kh, oh, c0] ->
[(0)]; S_3[n, c1, oh, ow, c0] -> [(0)]; S_5[n, c1, kh, oh, ow, c0] -> [(0)]; S_6[n, c1, kh, kw, oh, ow, c0] -> [(-kw)] }
add { S_4[n, c1, kh, oh, c0] -> [(c0)]; S_3[n, c1, oh, ow, c0] -> [(c0)]; S_5[n, c1, kh, oh, ow, c0] -> [(c0)]; S_6[n,
c1, kh, kw, oh, ow, c0] -> [(c0)] },
]
 * This strategy is designed for Davinci architecture, for its five dimension data format.
 * We suppose two steps to achieve this strategy:
 * 1. find the last axis C0 schedule in the multi_union_pw_aff
 * 2. if find this schedule, move it to the end of the multi_union_pw_aff
 * 3. add the updated multi_union_pw_aff to the band node
 * *****************************************************/
isl::schedule_node SinkC0::SinkC0Schedule(isl::schedule_node &node) {
  if (!node.isa<isl::schedule_node_band>()) {
    return node;
  }
  auto schedule = node.as<isl::schedule_node_band>().get_partial_schedule();
  isl::union_pw_aff_list upal = isl::union_pw_aff_list();
  std::unordered_map<int, bool> lastIdxSchedule;

  // make new union pw aff list
  for (unsigned int i = 0; i < schedule.size(); ++i) {
    isl::union_pw_aff upa = schedule.get_union_pw_aff(i);
    isl::pw_aff_list paList = upa.get_pw_aff_list();
    bool findC0Schedule = FindC0Schedule(paList);
    if (findC0Schedule) {
      lastIdxSchedule[i] = true;
      continue;
    }
    if (upal.is_null()) {
      upal = isl::union_pw_aff_list(upa);
    } else {
      upal = upal.add(upa);
    }
  }

  // save permutable value for this band
  int permutable = node.as<isl::schedule_node_band>().get_permutable();
  if (!lastIdxSchedule.empty() && permutable == 1) {
    for (auto idx : lastIdxSchedule) {
      isl::union_pw_aff upa = schedule.get_union_pw_aff(idx.first);
      if (upal.is_null()) {
        upal = isl::union_pw_aff_list(upa);
      } else {
        upal = upal.add(upa);
      }
    }
  } else {
    return node;
  }

  std::vector<int> coincident;
  int n = node.as<isl::schedule_node_band>().n_member();
  ExchangeCoincident(coincident, node, lastIdxSchedule, n);

  // make multi_union_pw_aff
  isl::multi_union_pw_aff mupa = isl::multi_union_pw_aff(schedule.get_space(), upal);

  // delete old node
  node = node.del();

  // insert new node
  node = node.insert_partial_schedule(mupa);
  node = node.as<isl::schedule_node_band>().set_permutable(permutable);
  for (int i = 0; i < n; ++i) {
    node = node.as<isl::schedule_node_band>().member_set_coincident(i, coincident[i]);
  }
  return node;
}

isl::schedule SinkC0::Run(isl::schedule sch) {
  auto fn = [&, this](isl::schedule_node node) -> isl::schedule_node {
    if (node.isa<isl::schedule_node_band>()) {
      node = SinkC0Schedule(node);
    }
    return node;
  };

  return sch.get_root().map_descendant_bottom_up(fn).get_schedule();
}

}  // namespace poly
}  // namespace ir
}  // namespace akg