cce_isl_emitter.cc 92.5 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/**
 * Copyright 2019 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

17
#include "poly/cce_isl_emitter.h"
C
ckey_Dou 已提交
18 19

#include "ir_pass.h"
20
#include "poly/dma_inject.h"
C
ckey_Dou 已提交
21
#include "pass/utils.h"
22
#include "poly/spec_gemm_builder.h"
C
ckey_Dou 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

namespace akg {
namespace ir {
namespace poly {
class MadMarker : public IRMutator {
 public:
  Stmt Mutate_(const Provide *op, const Stmt &s) final {
    Stmt stmt = ParseStmtOps(op, s);
    return stmt;
  }

  void InsertInsnAttr(const Provide *p, const std::string &str) {
    for (const auto &i : insn_attrs_) {
      if (i.first == p) LOG(WARNING) << "Provide* " << p << " was registed in insn_attrs_ with " << str;
    }
    insn_attrs_.emplace_back(p, str);
  }

  Stmt ParseStmtOps(const Provide *op, const Stmt &s) {
    if (isImm(op->value)) {
      InsertInsnAttr(op, std::string("broadcast"));
      return s;
    }
    ParseMad(op->value, op);
    return s;
  }

  void ParseMad(const Expr &val, const Provide *pop) {
    auto op = val.as<Call>();
    if (op && op->name == "mad") InsertInsnAttr(pop, std::string("mad"));
  }

  Stmt Run(Stmt stmt) {
    stmt = this->Mutate(stmt);
    if (insn_attrs_.empty()) return stmt;

    for (auto i = insn_attrs_.begin(); i != insn_attrs_.end(); ++i) {
      if (i->second == "broadcast") {
        auto j = i;
        ++j;
        if (j != insn_attrs_.end() && j->second == "mad") {
          LOG(INFO) << "There is a cube in MultiVectorSplitter";
          i = j;
        }
      }
      if (i->second == "mad") {
        stmt = AttrStmt::make(make_zero(Int(32)), "pragma_emit_insn", Expr(i->second), stmt);
      }
    }

    return stmt;
  }

  MadMarker() = default;
  ~MadMarker() override = default;

 private:
  std::vector<std::pair<const Provide *, std::string>> insn_attrs_;
};

83
class GatherVar : public air::ir::IRVisitor {
C
ckey_Dou 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
 public:
  explicit GatherVar(Map<Tensor, Buffer> binds) : binds_(std::move(binds)) {}
  void Visit_(const Variable *op) final {
    if (visit_var_) {
      vars_.insert(op);
    }
    IRVisitor::Visit_(op);
  }
  ~GatherVar() override = default;

  void Visit_(const Provide *op) final {
    if (std::any_of(binds_.begin(), binds_.end(),
                    [=](const std::pair<Tensor, Buffer> &i) { return (op->func->func_name() == i.first->op->name); })) {
      Array<Expr> left_args = op->args;
      Array<Expr> right_args;
      if (auto right = op->value.as<Call>()) {
        if (right->call_type == Call::Halide) {
          right_args = right->args;
        }
      }
      visit_var_ = true;
      for (unsigned int i = 0; i < left_args.size(); i++) {
        this->Visit(Simplify_cce(left_args[i] - right_args[i]));
      }
      visit_var_ = false;
    }
    IRVisitor::Visit_(op);
  }

  std::unordered_set<const Variable *> vars_;
  const Map<Tensor, Buffer> binds_;
  bool visit_var_{false};
};

class HoistL0Write : public IRMutator {
 public:
  HoistL0Write(const Map<Tensor, Buffer> &binds, const Stmt &write) : write_(write) {
    auto f = GatherVar(binds);
    f.Visit(write);
    vars_ = f.vars_;
  }
  ~HoistL0Write() override = default;

  Stmt Mutate_(const For *op, const Stmt &s) final {
    if (!mutate_) {
      for (const auto &v : vars_) {
        if (op->loop_var->name_hint == v->name_hint) {
          found_ = true;
          innermost_for_ = op;
        }
      }
    }
    if (mutate_) {
      if (op == innermost_for_ || op->body.get() == innermost_for_) {
        for (const auto &v : vars_) {
          if (op->loop_var->name_hint == v->name_hint) {
            vmap_.emplace(v, op->loop_var);
            mutate_write_ = true;
            write_ = this->Mutate(write_);
            mutate_write_ = false;
            vmap_.clear();
          }
        }
      }
      if (op == innermost_for_) {
        return For::make(op->loop_var, op->min, op->extent, op->for_type, op->device_api,
                         Block::make(op->body, write_));
      }
    }
    return IRMutator::Mutate_(op, s);
  }
  Expr Mutate_(const Variable *op, const Expr &e) final {
    if (mutate_write_ && vmap_.count(op)) {
      return vmap_.at(op);
    } else {
      return e;
    }
  }
  Stmt Mutate_(const Provide *op, const Stmt &s) final {
    if (mutate_write_) {
      Array<Expr> args;
      for (const auto &arg : op->args) {
        args.push_back(this->Mutate(arg));
      }
W
wangzhuo325 已提交
168 169
      auto value = this->Mutate(op->value);
      return Provide::make(op->func, op->value_index, value, args);
C
ckey_Dou 已提交
170 171 172
    }
    return IRMutator::Mutate_(op, s);
  }
W
wangzhuo325 已提交
173 174 175 176 177 178 179 180 181 182
  Expr Mutate_(const Call *op, const Expr &e) final {
    if (mutate_write_) {
      Array<Expr> args;
      for (const auto &arg : op->args) {
        args.push_back(this->Mutate(arg));
      }
      return Call::make(op->type, op->name, args, op->call_type, op->func, op->value_index);
    }
    return IRMutator::Mutate_(op, e);
  }
C
ckey_Dou 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

  bool found_{false};
  bool mutate_{false};
  bool mutate_write_{false};

 private:
  Stmt write_;
  const For *innermost_for_{nullptr};
  std::unordered_set<const Variable *> vars_;
  std::unordered_map<const Variable *, VarExpr> vmap_;
};

/*
 * for i
 *   for j
 *     if (cond)
 *        S0
 *     else
 *        S1
 *
 * transform to
 *
 * for i
 *   for j
 *     if (cond)
 *        S0
 * for i
 *   for j
 *     if (!cond)
 *        S1
 *
 * Note: we need to ensure that block statements are not split, otherwise the split is not safe.
 */
class IfThenElseSplitter {
 public:
  Stmt Run(const Stmt &stmt) {
    std::vector<Stmt> split_stmts = DescendOrSplit(stmt);
    return JoinSplittedStmts(split_stmts);
  }

 private:
  static Stmt JoinSplittedStmts(const std::vector<Stmt> &split_stmts) {
    if (split_stmts.empty()) {
      return Evaluate::make(0);
    } else if (split_stmts.size() == 1) {
      return split_stmts[0];
    } else {
      Stmt block_stmt = Block::make(split_stmts[0], split_stmts[1]);
      for (size_t i = 2; i < split_stmts.size(); i++) {
        block_stmt = Block::make(block_stmt, split_stmts[i]);
      }
      return block_stmt;
    }
  }

  std::vector<Stmt> DescendOrSplit(const Stmt &body) {
    if (auto for_stmt = body.as<For>()) {
      return Mutate_(for_stmt);
    } else if (auto if_stmt = body.as<IfThenElse>()) {
      return Mutate_(if_stmt);
    } else if (auto attr = body.as<AttrStmt>()) {
      return Mutate_(attr);
    } else {
      std::vector<Stmt> stmts;
      stmts.push_back(body);
      return stmts;
    }
  }

  std::vector<Stmt> Mutate_(const For *op) {
    auto stmts = DescendOrSplit(op->body);
    for (auto &stmt : stmts) {
      stmt = For::make(op->loop_var, op->min, op->extent, op->for_type, op->device_api, stmt);
    }
    return stmts;
  }

  std::vector<Stmt> Mutate_(const IfThenElse *op) {
    std::vector<Stmt> merged_stmts;
    if (op->then_case.defined()) {
      auto stmts = DescendOrSplit(op->then_case);
      for (const auto &stmt : stmts) {
        Stmt new_if = IfThenElse::make(op->condition, stmt, Stmt());
        merged_stmts.push_back(new_if);
      }
    }
    if (op->else_case.defined()) {
      auto stmts = DescendOrSplit(op->else_case);
      for (const auto &stmt : stmts) {
        Stmt new_if = IfThenElse::make(Not::make(op->condition), stmt, Stmt());
        merged_stmts.push_back(new_if);
      }
    }
    return merged_stmts;
  }

  std::vector<Stmt> Mutate_(const AttrStmt *op) {
    auto stmts = DescendOrSplit(op->body);
    for (auto &stmt : stmts) {
      stmt = AttrStmt::make(op->node, op->attr_key, op->value, stmt);
    }
    return stmts;
  }
};

288
class FindInnerRealize : public air::ir::IRMutator {
C
ckey_Dou 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 public:
  explicit FindInnerRealize(std::string name) : name_(std::move(name)) {}
  ~FindInnerRealize() override = default;

 private:
  Stmt Mutate_(const Realize *op, const Stmt &s) final {
    if (op->func->func_name() == name_) {
      return this->Mutate(op->body);
    }
    return IRMutator::Mutate_(op, s);
  }

 private:
  std::string name_;
};

class TransposeLoopVarOrderInMad : public IRMutator {
 private:
  Stmt Mutate_(const AttrStmt *op, const Stmt &s) override {
    if (op->attr_key == "gemm_transposed" && op->value.as<StringImm>() &&
        op->value.as<StringImm>()->value == var_name_key_) {
      return AttrStmt::make(op->node, op->attr_key, op->value, op->body);
    } else if (op->attr_key == "pragma_emit_insn" && op->value.as<StringImm>() &&
               op->value.as<StringImm>()->value == "mad") {
      inside_mad_ = true;
      Stmt stmt = IRMutator::Mutate_(op, s);
      inside_mad_ = false;
      return AttrStmt::make(op->node, "gemm_transposed", Expr(var_name_key_), stmt);
    } else {
      return IRMutator::Mutate_(op, s);
    }
  }

  Expr Mutate_(const Call *op, const Expr &e) override {
    Expr expr = IRMutator::Mutate_(op, e);
    std::string var_name = op->name;
    if (inside_mad_ && var_name.find(var_name_key_) != std::string::npos) {
      op = expr.as<Call>();
      CHECK(op != nullptr);
      CHECK(op->args.defined());
      CHECK_GE(op->args.size(), 4);
      size_t arg_base = op->args.size() - 4;
      auto new_args = op->args;
      if (transpose_outer_) {
        new_args.Set(arg_base + 1, op->args[arg_base]);
        new_args.Set(arg_base, op->args[arg_base + 1]);
      }
      if (transpose_inner_) {
        new_args.Set(arg_base + 2, op->args[arg_base + 3]);
        new_args.Set(arg_base + 3, op->args[arg_base + 2]);
      }
      expr = Call::make(op->type, op->name, new_args, op->call_type, op->func, op->value_index);
      return expr;
    } else {
      return expr;
    }
  }

 public:
  Stmt Run(const Stmt &stmt, const std::string &var_name_key, bool transpose_outer, bool transpose_inner) {
    var_name_key_ = var_name_key;
    inside_mad_ = false;
    transpose_outer_ = transpose_outer;
    transpose_inner_ = transpose_inner;
    return IRMutator::Mutate(stmt);
  }

 private:
  bool inside_mad_{false};
  bool transpose_outer_{false};
  bool transpose_inner_{false};
  std::string var_name_key_;
};

class FindStmt {
 public:
  void FindAst(const isl::ast_node &node) {
    if (auto for_node = node.as<isl::ast_node_for>()) {
      FindAst(for_node.get_body());
    } else if (auto if_node = node.as<isl::ast_node_if>()) {
      FindAst(if_node.get_then_node());

      if (if_node.has_else_node()) {
        FindAst(if_node.get_else_node());
      }
    } else if (auto block_node = node.as<isl::ast_node_block>()) {
      for (auto child : block_node.get_children()) {
        FindAst(child);
      }
    } else if (auto mark_node = node.as<isl::ast_node_mark>()) {
      FindAst(mark_node.get_node());
    } else if (auto user_node = node.as<isl::ast_node_user>()) {
      if (user_node.to_str().find("S_") != std::string::npos) usernodes.push_back(user_node);
    } else {
      LOG(FATAL) << "NYI " << node << "\n";
    }
  }

  std::vector<isl::ast_node_user> usernodes;
};

std::vector<isl::id> GetLhsAllArgs(const CCEIslEmitter *emitter, const isl::ast_node_user &node) {
  CHECK(emitter);
  CHECK(node.get_expr().isa<isl::ast_expr_op>());
  isl::ast_expr_op usr_expr = node.get_expr().as<isl::ast_expr_op>();
  CHECK(usr_expr);
  CHECK(usr_expr.get_arg(0).as<isl::ast_expr_id>());
  auto stmt_id = usr_expr.get_arg(0).as<isl::ast_expr_id>().get_id();
  auto node_id = node.get_annotation();
  isl::ast_expr_op node_op;
  std::vector<isl::id> arg_ids;
400
  if (!emitter->info_.IsRead(stmt_id) && !emitter->info_.IsWrite(stmt_id)) {
C
ckey_Dou 已提交
401 402 403 404 405 406 407 408
    node_op = node.get_expr().as<isl::ast_expr_op>();
    if (!node_op) return arg_ids;
  } else {
    isl::ast_expr node_expr;
    auto iterator_map = emitter->node_info_map_.at(node_id).iterator_map;
    auto hoisted = iterator_map.range_factor_range();
    auto original = iterator_map.range_factor_domain().range_factor_range();
    auto build = emitter->node_info_map_.at(node_id).build;
409
    if (emitter->info_.IsRead(stmt_id)) {
C
ckey_Dou 已提交
410
      node_expr = build.access_from(isl::multi_pw_aff(hoisted));
411
    } else if (emitter->info_.IsWrite(stmt_id)) {
C
ckey_Dou 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
      node_expr = build.access_from(isl::multi_pw_aff(original));
    }
    node_op = node_expr.as<isl::ast_expr_op>();
    if (node_op && !node_op.as<isl::ast_expr_op_access>()) return arg_ids;
  }

  for (unsigned int i = 1; i < node_op.get_n_arg(); ++i) {
    if (auto expr_id = node_op.get_arg(i).as<isl::ast_expr_id>()) {
      arg_ids.push_back(expr_id.get_id());
    } else if (node_op.get_arg(i).as<isl::ast_expr_op>()) {
      isl::ast_expr_op in_op = node_op.get_arg(i).as<isl::ast_expr_op>();
      if (auto add_op = in_op.as<isl::ast_expr_op_add>()) {
        for (unsigned int j = 0; j < add_op.get_n_arg(); ++j) {
          if (auto add_id = add_op.get_arg(j).as<isl::ast_expr_id>()) {
            arg_ids.push_back(add_id.get_id());
          }
        }
      } else if (auto minus_op = in_op.as<isl::ast_expr_op_minus>()) {
        for (unsigned int j = 0; j < minus_op.get_n_arg(); ++j) {
          if (auto minus_id = minus_op.get_arg(j).as<isl::ast_expr_id>()) {
            arg_ids.push_back(minus_id.get_id());
          }
        }
      }
    }
  }
  return arg_ids;
}

bool ForShouldPassDown(const CCEIslEmitter *const emitter, const isl::ast_node &node, const isl::id &isl_iter_id) {
  std::queue<isl::ast_node> nodes;
  nodes.push(node);

  unsigned int user_node_cnt = 0;

  while (!nodes.empty()) {
    auto node_tmp = nodes.front();
    nodes.pop();
    if (auto block_node = node_tmp.as<isl::ast_node_block>()) {
      for (auto child : block_node.get_children()) {
        nodes.push(child);
      }
    } else if (auto for_node = node_tmp.as<isl::ast_node_for>()) {
      if (auto node_in_for = for_node.get_body()) {
        nodes.push(node_in_for);
      }
    } else if (auto if_node = node_tmp.as<isl::ast_node_if>()) {
      if (auto then_in_if = if_node.get_then_node()) {
        nodes.push(then_in_if);
      }
      if (if_node.has_else_node()) {
        if (auto else_in_if = if_node.get_else_node()) {
          nodes.push(else_in_if);
        }
      }
    } else if (auto user_node = node_tmp.as<isl::ast_node_user>()) {
      user_node_cnt++;
      bool is_contain = false;
      auto arg_ids = GetLhsAllArgs(emitter, user_node);
      auto rit = arg_ids.rbegin();
      if (rit != arg_ids.rend() && *rit == isl_iter_id) {
        is_contain = true;
      }
      if (!is_contain) return false;
    } else if (auto mark_node = node_tmp.as<isl::ast_node_mark>()) {
      nodes.push(mark_node.get_node());
    }
  }
  return true;
}

bool CCEIslEmitter::InjectMulticore(const std::string &iter) {
  bool should_insert_multi_core = false;
  if (multicore_info.enabled) {
    // coincident member is X in iterator "ccX"
    if (iter.substr(0, 2) == "cc") {
      const int radix = 10;
      CHECK_GE(iter.size(), 3);
      auto IsNumber = [](const std::string &str) -> bool {
        return !str.empty() &&
               std::find_if(str.begin(), str.end(), [](char c) { return !std::isdigit(c); }) == str.end();
      };
      CHECK(IsNumber(iter.substr(2)));
      size_t coincident_member = std::strtol(iter.substr(2).c_str(), nullptr, radix);
      bool is_loop_in_multicore_band = (coincident_member < multicore_info.coincidence.size());
      if (is_loop_in_multicore_band) {
        should_insert_multi_core = multicore_info.coincidence[coincident_member];
K
kasonchan 已提交
499 500 501
        if (should_insert_multi_core) {
          ++multicore_info.multicore_depth;
          --multicore_info.coincidence[coincident_member];
502
        }
C
ckey_Dou 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
      }
    } else {
      LOG(WARNING) << "multicore: unrecognized loop var " << iter;
    }
  }
  return should_insert_multi_core;
}

Stmt CCEIslEmitter::EmitFor(const isl::ast_node_for &node) {
  std::string iter = node.get_iterator().to_C_str();

  // get iterator
  isl::id isl_iter_id = node.get_iterator().as<isl::ast_expr_id>().get_id();
  VarExpr iter_expr(isl_iter_id.to_str());
  PushIter(iter_expr.get());

  // get init
  Expr init_expr = Interpret(node.get_init());

  // get condition
  auto isl_cond = node.get_cond().as<isl::ast_expr_op>();
  CHECK(isl_cond && (isl_cond.as<isl::ast_expr_op_lt>() || isl_cond.as<isl::ast_expr_op_le>()))
    << "unexpected isl ast cond: " << node.get_cond();
  auto cond_lhs = isl_cond.get_arg(0).as<isl::ast_expr_id>();
  CHECK(cond_lhs);
  CHECK_EQ(cond_lhs.get_id(), isl_iter_id);
  Expr cond_expr = Simplify_cce(Interpret(isl_cond.get_arg(1)) - init_expr);
  if (isl_cond.as<isl::ast_expr_op_le>()) {
    cond_expr = Simplify_cce(cond_expr + 1);
  }

  auto original_multicore_info = multicore_info;
  bool should_insert_multi_core = InjectMulticore(iter);

  // emit body
  Stmt body_stmt = EmitAst(node.get_body());
  Stmt stmt;
  if (body_stmt.defined()) {
    stmt = For::make(iter_expr, init_expr, cond_expr, ForType::Serial, DeviceAPI::None, body_stmt);
542
    if (info_.user_config_.GetOptimizeForDavinci()) {
C
ckey_Dou 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
      const int DAVINCIC0SIZE = 16;
      // need to find the last axis
      if (Equal(cond_expr, Expr(DAVINCIC0SIZE)) && ForShouldPassDown(this, node, isl_iter_id)) {
        stmt = AttrStmt::make(make_zero(Int(32)), "pass_down", DAVINCIC0SIZE, stmt);
      }
    }
  } else {
    stmt = Evaluate::make(0);
  }

  PopIter(iter_expr.get());

  if (should_insert_multi_core) {
    CHECK_EQ(multicore_info.multicore_depth, original_multicore_info.multicore_depth + 1);
    stmt = AttrStmt::make(make_zero(Int(32)), "pragma_multi_core_depth", Expr(multicore_info.multicore_depth), stmt);
K
kasonchan 已提交
558
    --multicore_info.multicore_depth;
C
ckey_Dou 已提交
559 560 561 562 563 564
  }

  return stmt;
}

Expr CCEIslEmitter::EmitLoad(const isl::ast_expr &expr, const Type type) {
565 566 567
  if (PRINT_CCE_ISL_EMMITER) {
    LOG(INFO) << ">>>>>>>>>>>>INPUT AST_NODE[LOAD]<<<<<<<<<<<<<<\n" << expr;
  }
C
ckey_Dou 已提交
568 569 570 571 572 573 574 575 576
  if (auto op = expr.as<isl::ast_expr_op>()) {
    if (auto access = op.as<isl::ast_expr_op_access>()) {
      // make buffer, index
      CHECK(op.get_arg(0).as<isl::ast_expr_id>());
      auto var = op.get_arg(0).as<isl::ast_expr_id>().get_id();
      Array<Expr> local_args;
      for (unsigned int i = 1; i < op.get_n_arg(); ++i) {
        local_args.push_back(Interpret(op.get_arg(i)));
      }
577
      if (info_.analysis_result_.CountBufferDefInfo(var)) {
C
ckey_Dou 已提交
578 579 580 581 582
        realize_use_.insert(var);
        if (!if_map_.count(var) || !AOutThanB(if_map_.at(var), cur_if_list_)) {
          realize_use_with_may_def_.insert(var);
        }
      }
583 584
      Tensor t = info_.FindTensor(var);
      if (info_.cube_info_.IsIm2col()) {
C
ckey_Dou 已提交
585 586
        // compute_local_UB find compute
        std::string name = t->op->name;
587
        for (const auto &updateTensor : info_.analysis_result_.GetUpdateTensor()) {
C
ckey_Dou 已提交
588
          if (updateTensor->op->name == name) {
589 590 591 592 593 594
            auto call = Call::make(type, updateTensor->op->name, local_args, Call::CallType::Halide, updateTensor->op,
                                   updateTensor->value_index);
            if (PRINT_CCE_ISL_EMMITER) {
              LOG(INFO) << ">>>>>>>>>>>>OUTPUT STMT<<<<<<<<<<<<\n" << call;
            }
            return call;
C
ckey_Dou 已提交
595 596 597
          }
        }
      }
598 599 600 601 602
      auto call = Call::make(type, t->op->name, local_args, Call::CallType::Halide, t->op, t->value_index);
      if (PRINT_CCE_ISL_EMMITER) {
        LOG(INFO) << ">>>>>>>>>>>>OUTPUT STMT<<<<<<<<<<<<\n" << call;
      }
      return call;
C
ckey_Dou 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    }
  }
  return Expr();
}

/* Assign "aff" to *user and return isl_stat_error, effectively extracting
 * the first (and presumably only) affine expression in the isl_pw_aff
 * on which this function is used.
 */
static isl_stat ExtractSinglePiece(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user) {
  auto p = reinterpret_cast<isl_aff **>(user);
  CHECK(p != nullptr);

  *p = aff;
  static_cast<void>(isl_set_free(set));

  return isl_stat_error;
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static isl::pw_multi_aff ComputeNewBufferFootprint(const std::shared_ptr<TensorFootprintCluster> &fp_cluster,
                                                   const isl::pw_multi_aff &buffer_footprint) {
  if (!fp_cluster->UnWriteable()) return buffer_footprint;
  if (!fp_cluster->foot_print_.is_valid) return buffer_footprint;
  unsigned num_dims = fp_cluster->foot_print_.GetBoxDim();

  isl::pw_multi_aff new_buffer_footprint = buffer_footprint;
  for (unsigned dim = 0; dim < num_dims; ++dim) {
    isl::aff lower_bound = fp_cluster->foot_print_.GetBoxLowerBound(dim);
    isl::pw_aff dim_buf_fp = buffer_footprint.get_pw_aff(dim);
    if (dim_buf_fp.n_piece() != 1) return buffer_footprint;
    // there is only one piece, but we have to use the foreach API
    dim_buf_fp.foreach_piece([&lower_bound, &new_buffer_footprint, &dim](const isl::set &set,
                                                                         const isl::aff &aff) -> void {
      if (IsAffVarPlusOffset(lower_bound) && IsAffNonZeroConst(aff)) {
        isl::pw_aff zero = isl::pw_aff(isl::manage(isl_aff_set_constant_si(aff.copy(), 0)));
        new_buffer_footprint = isl::manage(isl_pw_multi_aff_set_pw_aff(new_buffer_footprint.copy(), dim, zero.copy()));
      }
    });
  }
  return new_buffer_footprint;
}

/*
 * Remove the constant offset from provide args, e.g. input_1_local_UB(32, 7, cc2, cc3) = input_1(...)
 * Check the footprint cluster of the hoisted var to confirm this input tensor has multiple accesses
 * from shifted tiles. This should be improved by computing the new footprint with footprint_per_access(),
 * but from isl AST we do not know the footprint ID that corresponds to the GM -> UB copy.
 */
isl::pw_multi_aff RemoveConstOffsetFromBufferFootprint(
  const isl::pw_multi_aff &buffer_footprint,
  const std::vector<std::pair<isl::union_set, BufferedFootPrintInfo>> &active_buffer_footprints) {
  const isl::id buffer_id = buffer_footprint.get_tuple_id(isl_dim_out);
  for (const auto &act_buf : active_buffer_footprints) {
    if (act_buf.second.cluster_id == buffer_id) {
      const auto &footprint_cluster = act_buf.second.cluster;
      return ComputeNewBufferFootprint(footprint_cluster, buffer_footprint);
    }
  }
  return buffer_footprint;
}

Stmt CCEIslEmitter::EmitRead(const isl::ast_node_user &node) {
C
ckey_Dou 已提交
665 666 667 668 669 670
  isl::id node_id = node.get_annotation();
  isl::pw_multi_aff iterator_map = node_info_map_.at(node_id).iterator_map;
  isl::pw_multi_aff hoisted = iterator_map.range_factor_range();
  isl::pw_multi_aff original = iterator_map.range_factor_domain().range_factor_range();

  isl::id original_tensor = original.get_tuple_id(isl_dim_out);
671 672 673
  bool isInputTensor = info_.FindTensorInOrig(original_tensor).defined();
  if (isInputTensor)
    hoisted = RemoveConstOffsetFromBufferFootprint(hoisted, info_.analysis_result_.ActiveBufferFootprints());
C
ckey_Dou 已提交
674 675 676 677 678

  auto build = node_info_map_.at(node_id).build;
  auto lhs = build.access_from(isl::multi_pw_aff(hoisted));
  auto rhs = build.access_from(isl::multi_pw_aff(original));

679 680 681
  size_t pos = info_.cube_info_.GetBName().find("_local");
  std::string b_name =
    pos == std::string::npos ? info_.cube_info_.GetBName() : info_.cube_info_.GetBName().substr(0, pos);
C
ckey_Dou 已提交
682 683
  auto b_l1_name = b_name + "_local_L1";

684 685 686 687
  if (info_.user_config_.GetMatBDimH() > 0 && info_.user_config_.GetMatBDimW() > 0 &&
      original.get_tuple_id(isl_dim_out).get_name() == b_l1_name) {
    auto h_size = info_.user_config_.GetMatBDimH();
    auto w_size = info_.user_config_.GetMatBDimW();
C
ckey_Dou 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

    auto mpa = isl::multi_pw_aff(original);
    auto size = mpa.size();
    auto list = isl::aff_list(original.ctx(), size);

    CHECK_EQ(size, 4);
    isl_aff *affptr0 = nullptr;
    isl_aff *affptr1 = nullptr;
    isl_aff *affptr2 = nullptr;
    isl_aff *affptr3 = nullptr;
    isl_aff *affptr4 = nullptr;
    isl_aff *affptr5 = nullptr;
    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(0).get(), &ExtractSinglePiece, &affptr0) == isl_stat_error);
    CHECK(affptr0 != nullptr);
    auto aff0 = (isl::manage(affptr0) / (h_size * w_size)).floor();

    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(0).get(), &ExtractSinglePiece, &affptr1) == isl_stat_error);
    CHECK(affptr1 != nullptr);
    auto aff1 = (h_size - 1 - ((isl::manage(affptr1) / w_size).floor().mod(isl::val(original.ctx(), h_size)))) * w_size;

    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(0).get(), &ExtractSinglePiece, &affptr2) == isl_stat_error);
    CHECK(affptr2 != nullptr);
    auto aff2 = w_size - 1 - (isl::manage(affptr2).mod(isl::val(original.ctx(), w_size)));

    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(1).get(), &ExtractSinglePiece, &affptr3) == isl_stat_error);
    CHECK(affptr3 != nullptr);
    auto aff3 = isl::manage(affptr3) * (h_size * w_size);

    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(2).get(), &ExtractSinglePiece, &affptr4) == isl_stat_error);
    CHECK(affptr4 != nullptr);
    auto aff4 = isl::manage(affptr4);

    CHECK(isl_pw_aff_foreach_piece(mpa.get_pw_aff(3).get(), &ExtractSinglePiece, &affptr5) == isl_stat_error);
    CHECK(affptr5 != nullptr);
    auto aff5 = isl::manage(affptr5);

    list = list.add(aff3 + aff1 + aff2).add(aff0).add(aff5).add(aff4);
    auto ma = isl::multi_aff(mpa.get_space(), list);

    rhs = build.access_from(isl::multi_pw_aff(ma));
  }

730
  Type type = info_.GetDtypeOf(rhs);
C
ckey_Dou 已提交
731 732 733 734 735 736 737 738 739 740
  if (auto op = lhs.as<isl::ast_expr_op>()) {
    if (auto access = op.as<isl::ast_expr_op_access>()) {
      Expr value = EmitLoad(rhs, type);
      auto var = op.get_arg(0).as<isl::ast_expr_id>().get_id();

      Array<Expr> local_args;
      for (unsigned int i = 1; i < op.get_n_arg(); ++i) {
        local_args.push_back(Interpret(op.get_arg(i)));
      }

741
      Tensor t = info_.FindTensor(var);
C
ckey_Dou 已提交
742
      CHECK(t.defined());
743
      if (info_.analysis_result_.CountBufferDefInfo(var)) {
C
ckey_Dou 已提交
744 745 746 747 748 749 750
        realize_may_def_.insert(var);
        if_map_.emplace(var, cur_if_list_);
        if (cur_if_list_.empty()) {
          realize_must_def_.insert(var);
        }
      }
      hoisted_read_.insert(var);
751 752
      if (info_.cube_info_.IsIm2col() && !info_.analysis_result_.GetUpdateTensor().empty()) {
        return Provide::make(info_.analysis_result_.GetUpdateTensor()[0]->op, 0, value, local_args);
C
ckey_Dou 已提交
753 754 755 756 757 758 759
      }
      return Provide::make(t->op, 0, value, local_args);
    }
  }
  return Stmt();
}

760
Stmt CCEIslEmitter::EmitWrite(const isl::ast_node_user &node, AtomicType atomic) {
C
ckey_Dou 已提交
761 762 763 764 765 766 767 768
  auto node_id = node.get_annotation();
  CHECK_GT(node_info_map_.count(node_id), 0);
  auto iterator_map = node_info_map_.at(node_id).iterator_map;
  auto hoisted = iterator_map.range_factor_range();
  auto original = iterator_map.range_factor_domain().range_factor_range();

  // refine atomic from reduce op
  bool doatomic = false;
769
  if (atomic == AtomicType::Add) {
C
ckey_Dou 已提交
770
    auto srcid = original.get_tuple_id(isl_dim_out);
771
    for (const auto &i : info_.analysis_result_.GetStatementMap()) {
C
ckey_Dou 已提交
772 773
      std::set<const Variable *> rmv;
      const auto provide = static_cast<const Provide *>(i.second);
774
      if (provide == nullptr || info_.analysis_result_.GetReduceMap().count(provide) != 1) continue;
C
ckey_Dou 已提交
775 776 777 778 779
      if (provide->func->func_name() != srcid.get_name()) continue;
      doatomic = true;
      if (!stmt_var_map_.count(i.first)) continue;
      VarMap vmap = stmt_var_map_.at(i.first);
      for (const auto &j : vmap) {
780
        for (auto k : info_.analysis_result_.GetReduceMap().at(provide)) {
C
ckey_Dou 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794
          if (k->var.get()->name_hint != j.first.get_name()) continue;
          std::vector<const Variable *> iters = ExtractIterfromExpr().Run(j.second);
          for (auto v : iters)
            if (FindIter(v)) rmv.insert(v);
        }
      }

      for (auto j : rmv) rmif_.insert(j);
    }
  }

  auto build = node_info_map_.at(node_id).build;
  auto rhs = build.access_from(isl::multi_pw_aff(hoisted));
  auto lhs = build.access_from(isl::multi_pw_aff(original));
795
  Type type = info_.GetDtypeOf(lhs);
C
ckey_Dou 已提交
796 797 798 799 800 801 802 803 804 805 806

  if (auto op = lhs.as<isl::ast_expr_op>()) {
    if (auto access = op.as<isl::ast_expr_op_access>()) {
      Expr value = EmitLoad(rhs, type);
      auto var = op.get_arg(0).as<isl::ast_expr_id>().get_id();

      Array<Expr> local_args;
      for (unsigned int i = 1; i < op.get_n_arg(); ++i) {
        local_args.push_back(Interpret(op.get_arg(static_cast<int>(i))));
      }

807
      Tensor t = info_.FindTensor(var);
C
ckey_Dou 已提交
808
      CHECK(t.defined());
809
      if (info_.analysis_result_.CountBufferDefInfo(var)) {
C
ckey_Dou 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        realize_may_def_.insert(var);
        if_map_.emplace(var, cur_if_list_);
        if (cur_if_list_.empty()) {
          realize_must_def_.insert(var);
        }
      }
      hoisted_write_.insert(var);

      if (doatomic) {
        auto call = Call::make(type, t->op->name, local_args, Call::CallType::Halide, t->op, t->value_index);
        value = Add::make(call, value);
        return AttrStmt::make(make_zero(Int(32)), ATTR_ATOMIC_ADD, Expr(1), Provide::make(t->op, 0, value, local_args));
      }

      // remove original copy out promotion statement because it is sinked into if stmt of computation
825
      if (info_.analysis_result_.GetConditionalWriteBufferFootprints().count(t->op->name)) return Evaluate::make(0);
C
ckey_Dou 已提交
826 827 828 829 830 831 832 833 834 835 836 837

      return Provide::make(t->op, 0, value, local_args);
    }
  }
  return Stmt();
}

Stmt CCEIslEmitter::EmitUserStmt(const isl::ast_node_user &node) {
  if (is_old_gemm_l1write_) {
    LOG(INFO) << "don't emit conv origin user stmt.";
    return Evaluate::make(Expr(0));
  } else {
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    CHECK(node.get_expr().isa<isl::ast_expr_op>());
    isl::ast_expr_op usr_expr = node.get_expr().as<isl::ast_expr_op>();
    stmt_id_ = usr_expr.get_arg(0).as<isl::ast_expr_id>().get_id();
    node_id_ = node.get_annotation();
    const Node *stmt_node = info_.analysis_result_.GetStatementMap().at(stmt_id_);
    CHECK(stmt_node);
    // compute VarMap to replace old iterators
    auto build = node_info_map_.at(node_id_).build;
    auto tuple = info_.analysis_result_.GetOperatorDomainMap().at(stmt_id_).tuple;
    auto iterator_map = node_info_map_.at(node_id_).iterator_map;

    var_map_.clear();
    for (unsigned int i = 0; i < tuple.size(); ++i) {
      isl::id isl_old_iter = tuple.get_id(i);
      auto isl_expr = build.expr_from(iterator_map.get_pw_aff(i));
      Expr halide_new_iter = Interpret(isl_expr);
      var_map_.emplace(isl_old_iter, halide_new_iter);
      std::string replace_id = isl_old_iter.get_name() + "_";
      std::vector<const Variable *> vec = ExtractIterfromExpr().Run(halide_new_iter);
      for (auto item : vec) {
        std::string new_name = item->name_hint;
        auto iter_prefix = info_.user_config_.GetIterPrefix(info_.cube_info_.IsSpecGemm());
        size_t pos = new_name.find(iter_prefix);
        if (pos != std::string::npos) {
          new_name = new_name.replace(pos, iter_prefix.size(), replace_id);
          iters_old_name_.emplace(item, item->name_hint);
          iters_new_name_.emplace(item, new_name);
        }
      }
    }

    VarMap vmap = var_map_;
    stmt_var_map_.emplace(stmt_id_, vmap);
    auto user_stmt = EmitUserStmtContent(stmt_node);
C
ckey_Dou 已提交
872 873 874 875

    // fix conv prefusion dma if condition
    bool add_attr = false;
    std::string type_key = std::string(stmt_node->GetTypeKey());
876 877
    if (!info_.cube_info_.IsSpecGemm() && (type_key == "IfThenElse")) {
      isl::union_set transfer_stmt = info_.analysis_result_.GetTransferStmt();
C
ckey_Dou 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
      if (!transfer_stmt.is_empty()) {
        transfer_stmt.foreach_set([&add_attr, this](const isl::set &s) -> void {
          if (s.get_tuple_name() == stmt_id_.get_name()) {
            add_attr = true;
          }
        });
      }
    }
    if (add_attr) {
      user_stmt = AttrStmt::make(make_zero(Int(32)), "pragma_fix_ifcondition", Expr(1), user_stmt);
    }
    return user_stmt;
  }
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
AtomicType GetAtomicWrite(const isl::id &id, const StatementMap &statements) {
  for (const auto &i : statements) {
    const Node *stmt_node = i.second;
    if (stmt_node->IsInstance<Provide>()) {
      auto provide = static_cast<const Provide *>(stmt_node);
      if (const auto cop = provide->func.as<ComputeOpNode>()) {
        if (cop->attrs.count(ATTR_ATOMIC_ADD) != 0) {
          if (auto str_op = cop->attrs.at(ATTR_ATOMIC_ADD).as<StringImm>()) {
            auto str = str_op->value;
            if (str == id.get_name()) return AtomicType::Add;
          }
        }
      }
    }
  }
  return AtomicType::Equ;
}

C
ckey_Dou 已提交
911 912 913 914 915 916 917
Stmt CCEIslEmitter::EmitStmt(const isl::ast_node_user &node) {
  CHECK(node.get_expr().isa<isl::ast_expr_op>());
  isl::ast_expr_op usr_expr = node.get_expr().as<isl::ast_expr_op>();
  CHECK(usr_expr);
  auto stmt_id = usr_expr.get_arg(0).as<isl::ast_expr_id>().get_id();
  auto node_id = node.get_annotation();

918 919 920 921 922 923 924 925 926 927
  if (info_.IsRead(stmt_id)) {
    auto s = EmitRead(node);
    if (PRINT_CCE_ISL_EMMITER) {
      LOG(INFO) << ">>>>>>>>>>>>INPUT AST_NODE[READ]<<<<<<<<<<<<<<\n" << node;
      LOG(INFO) << ">>>>>>>>>>>>OUTPUT STMT<<<<<<<<<<<<\n" << s;
    }
    return s;
  } else if (info_.IsWrite(stmt_id)) {
    auto s = Stmt();
    if (info_.IsGMWrite(stmt_id)) {
C
ckey_Dou 已提交
928 929 930
      auto iterator_map = node_info_map_.at(node_id).iterator_map;
      auto original = iterator_map.range_factor_domain().range_factor_range();
      auto srcid = original.get_tuple_id(isl_dim_out);
931 932 933 934 935 936 937
      s = EmitWrite(node, GetAtomicWrite(srcid, info_.analysis_result_.GetStatementMap()));
    } else {
      s = EmitWrite(node, AtomicType::Equ);
    }
    if (PRINT_CCE_ISL_EMMITER) {
      LOG(INFO) << ">>>>>>>>>>>>INPUT AST_NODE[WRITE]<<<<<<<<<<<<<<\n" << node;
      LOG(INFO) << ">>>>>>>>>>>>OUTPUT STMT<<<<<<<<<<<<\n" << s;
C
ckey_Dou 已提交
938
    }
939
    return s;
C
ckey_Dou 已提交
940 941 942 943 944 945 946
  } else {
    SetCube(stmt_id);
    return EmitUserStmt(node);
  }
}

void CCEIslEmitter::SetCube(const isl::id &stmt_id) {
947
  auto cur_op = info_.analysis_result_.GetStmtOpInfoMap().at(stmt_id);
C
ckey_Dou 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
  opinfo_.isCube = cur_op.isCube || opinfo_.isCube;
  opinfo_.ops.insert(opinfo_.ops.end(), cur_op.ops.begin(), cur_op.ops.end());
  is_cube_ = true;
}

std::string CCEIslEmitter::ReplaceAxis(const std::string &old_axis) {
  for (const auto &i : iters_old_name_) {
    if (i.second == old_axis) {
      return iters_new_name_.at(i.first);
    }
  }
  return old_axis;
}

std::vector<std::string> CCEIslEmitter::ConstructPrefix() {
  std::vector<std::string> prefix;
  PartitionSingle *single = PartitionSingle::getInstance();
  if (single != nullptr && PartitionSingle::getTimes() == 1) {
    // m isolate first gemm or special gemm
    std::map<std::string, Expr> fractalInfo = PartitionSingle::getFractalInfo();
    std::vector<std::pair<std::string, std::string>> axis;
    axis.emplace_back(std::pair<std::string, std::string>("b", ATTR_CONV_BATCH));
    axis.emplace_back(std::pair<std::string, std::string>("no_", ATTR_CONV_TILE_N));
    axis.emplace_back(std::pair<std::string, std::string>("mo_", ATTR_CONV_TILE_M));
    axis.emplace_back(std::pair<std::string, std::string>("mi", ATTR_CONV_M_INNER));
    axis.emplace_back(std::pair<std::string, std::string>("ni", ATTR_CONV_N_INNER));
    axis.emplace_back(std::pair<std::string, std::string>("ko_", ATTR_CONV_TILE_K));
    for (const auto &i : axis) {
      CHECK(fractalInfo.find(i.second) != fractalInfo.end());
      if (!is_const_int(fractalInfo[i.second], 1)) {
        prefix.push_back(i.first);
      }
    }
  } else if (single != nullptr && PartitionSingle::getTimes() == 2) {
    /********************
     * m isolate second gemm
     * for gemm axis size is larger than 1, prefix.push_back(*)
     * mo_ is 1, so prefix.push_back at last
     * ***********************/
    std::map<std::string, Expr> fractalInfo = PartitionSingle::getFractalInfo();
    std::vector<std::pair<std::string, std::string>> axis;
    axis.emplace_back(std::pair<std::string, std::string>("b", ATTR_CONV_BATCH));
    axis.emplace_back(std::pair<std::string, std::string>("no_", ATTR_CONV_TILE_N));
    axis.emplace_back(std::pair<std::string, std::string>("mi", ATTR_CONV_M_INNER));
    axis.emplace_back(std::pair<std::string, std::string>("ni", ATTR_CONV_N_INNER));
    axis.emplace_back(std::pair<std::string, std::string>("ko_", ATTR_CONV_TILE_K));
    for (const auto &i : axis) {
      CHECK(fractalInfo.find(i.second) != fractalInfo.end());
      if (!is_const_int(fractalInfo[i.second], 1)) {
        prefix.push_back(i.first);
      }
    }
    prefix.emplace_back("mo_");
  }
  return prefix;
}

Stmt CCEIslEmitter::EmitGemmRangeInfoBackPropFilter(const Stmt &stmt) {
  PartitionSingle *single = PartitionSingle::getInstance();
  CHECK(single != nullptr);
  std::map<std::string, Expr> fractal_int_info = PartitionSingle::getFractalInfo();
  int l0_range_idx = range_idx_++;

  int K = fractal_int_info[ATTR_SPEC_GEMM_K].as<IntImm>()->value;
  int MO = fractal_int_info[ATTR_SPEC_GEMM_M_ALIGN].as<IntImm>()->value;
  int KO = fractal_int_info[ATTR_SPEC_GEMM_K_ALIGN].as<IntImm>()->value;
  int NO = fractal_int_info[ATTR_SPEC_GEMM_N_ALIGN].as<IntImm>()->value;
  int MI = fractal_int_info[ATTR_SPEC_GEMM_M_INNER].as<IntImm>()->value;
  int KI = fractal_int_info[ATTR_SPEC_GEMM_K_INNER].as<IntImm>()->value;
  int NI = fractal_int_info[ATTR_SPEC_GEMM_N_INNER].as<IntImm>()->value;
  int tile_m = fractal_int_info[ATTR_SPEC_GEMM_TILE_M].as<IntImm>()->value;
  int tile_k = fractal_int_info[ATTR_SPEC_GEMM_TILE_K].as<IntImm>()->value;
  int tile_n = fractal_int_info[ATTR_SPEC_GEMM_TILE_N].as<IntImm>()->value;

  // PLZ make sure axis order:
  // for (n_isolate) {
  //   for (m_isolate) {
  //     for (k_isolate) {
  //     }
  //   }
  // }stmtOpInfo

  int m_isolate = MO * MI % tile_m;
  int k_isolate = KO * KI % tile_k;
  int n_isolate = NO * NI % tile_n;

  int range_idx_max = 1;
  int k_base = 1;

  int m_base = k_base;
  if (k_isolate) {
    m_base *= 2;
    range_idx_max *= 2;
  }

  int n_base = m_base;
  if (m_isolate) {
    n_base *= 2;
    range_idx_max *= 2;
  }

  if (n_isolate) {
    range_idx_max *= 2;
  }

  CHECK(l0_range_idx < range_idx_max) << l0_range_idx << ":" << range_idx_max;

  Map<std::string, Range> range_map;

  if (KO * KI < tile_k) {
    tile_k = KO * KI;
  }
  int ko_min = k_isolate ? ((l0_range_idx / k_base % 2) ? (KO * KI / tile_k) : (0)) : (0);
  int ko_ext = k_isolate ? ((l0_range_idx / k_base % 2) ? (1) : (KO * KI / tile_k)) : (KO * KI / tile_k);
  range_map.Set("ko_", Range(Expr(ko_min), Expr(ko_ext)));
  if (k_isolate) {
    if (l0_range_idx / k_base % 2) {
      range_map.Set("k_size", Range(Expr(0), Expr(K - KO * KI / tile_k * tile_k)));
    } else {
      range_map.Set("k_size", Range(Expr(0), Expr(tile_k)));
    }
  } else {
    if (KO * KI == K) {
      range_map.Set("k_size", Range(Expr(0), Expr(tile_k)));
    } else {
      range_map.Set("k_tail_size", Range(Expr(0), Expr(K - (KO * KI / tile_k - 1) * tile_k)));
      range_map.Set("k_tail", Range(Expr(0), Expr(KO * KI / tile_k - 1)));
      range_map.Set("k_size", Range(Expr(0), Expr(tile_k)));
    }
  }
  range_map.Set("k_l1", Range(Expr(0), Expr(K)));

  if (NO * NI < tile_n) {
    tile_n = NO * NI;
  }
  int no_min = n_isolate ? ((l0_range_idx / n_base % 2) ? (NO * NI / tile_n) : (0)) : (0);
  int no_ext = n_isolate ? ((l0_range_idx / n_base % 2) ? (1) : (NO * NI / tile_n)) : (NO * NI / tile_n);
  range_map.Set("no_", Range(Expr(no_min), Expr(no_ext)));

  if (MO * MI < tile_m) {
    tile_m = MO * MI;
  }
  int mo_min = m_isolate ? ((l0_range_idx / m_base % 2) ? (MO * MI / tile_m) : (0)) : (0);
  int mo_ext = m_isolate ? ((l0_range_idx / m_base % 2) ? (1) : (MO * MI / tile_m)) : (MO * MI / tile_m);
  range_map.Set("mo_", Range(Expr(mo_min), Expr(mo_ext)));

  return AttrStmt::make(range_map, "pragma_gemm_l0", Expr(l0_range_idx), stmt);
}

1097 1098 1099 1100
void CCEIslEmitter::CollectGemmRangeInfoNewAxis(std::vector<Range> &range, std::vector<std::string> &prefix,
                                                std::unordered_map<std::string, bool> &outerAxis, Range &axisMRange,
                                                Map<std::string, Range> &range_map,
                                                Map<std::string, VarExpr> &axis_map) {
C
ckey_Dou 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  for (unsigned int i = 0; i < range.size(); i++) {
    std::stringstream ss;
    ss << "ee" << i;
    VarExpr oldName = VarExpr(ss.str());
    std::string newAxis = ReplaceAxis(ss.str());
    Range curRange = range[i];

    if (newAxis == ss.str()) {
      if (prefix[i] != "mi" && prefix[i] != "ni") {
        newAxis = prefix[i];
      } else {
        if (curRange->min.as<IntImm>() && curRange->min.as<IntImm>()->value == 0 && curRange->extent.as<IntImm>() &&
            curRange->extent.as<IntImm>()->value == 1) {
          newAxis = "";
        }
      }
    }

    if (!newAxis.empty()) {
      size_t pos = newAxis.find('_');
      CHECK(pos != std::string::npos);
      std::string tmp = newAxis.substr(0, pos + 1);
      outerAxis[tmp] = true;
      if (tmp == "mo_") axisMRange = curRange;
    }
    axis_map.Set(newAxis, oldName);
    range_map.Set(newAxis, curRange);
  }
}

Stmt CCEIslEmitter::EmitGemmRangeInfo(Stmt stmt) {
  /********************
   * this function is to emit gemm rangeInfo with pragma_gemm_l0 attribute
   *
      // attr [{"m_size": range(min=0, ext=49), "": range(min=0, ext=1), "no_0": range(min=0, ext=16), "m_lager_size":
  range(min=0, ext=64), "ko_4": range(min=0, ext=10), "mo_": range(min=0, ext=1)}] pragma_gemm_l0 = 0
      // attr [placeholder(input1_local_L1_local_L0B, 0x5654b8abca60)] realize_scope = "local.L0B"
      realize input1_local_L1_local_L0B([0, 6], [0, 8], [0, 16], [0, 16]) {
        // attr [0] pragma_bypass_filter_l0 = 0
        produce input1_local_L1_local_L0B {
          // attr [0] pragma_emit_insn = "dma_copy"
          for (ee10, 0, 6) {
            for (ee11, 0, 8) {
              for (ee12, 0, 16) {
                for (ee13, 0, 16) {
                  input1_local_L1_local_L0B(ee10, ee11, ee12, ee13) =input1_local_L1(((6*ko_4) + ee10), ((8*no_0) +
  ee11), ee12, ee13)
                }
              }
            }
          }
        }
      }

   * all the rangeInfo is outer outer axis in spec gemm
   *
   * explanation of: prefix and range
     CHECK(prefix.size() == range.size());

   * =========== Poly spec_gem input HalideIR ============
  produce output0_local_UB {
    for (b, 0, 1) {
      for (no, 0, 128) {
        for (mo, 0, 4) {
          for (mi, 0, 16) {
            for (ni, 0, 16) {
              output0_local_UB(b, no, mo, mi, ni) =0.000000h
              for (ko, 0, 64) {
                for (ki, 0, 16) {
                  output0_local_UB(b, no, mo, mi, ni) =(output0_local_UB(b, no, mo, mi, ni) + (input0_fractal_L1(b, mo,
  ko, mi, ki)*input1_local_L1(ko, no, ni, ki)))
                }
              }
            }
          }
        }
      }
    }
  }
  set dim
  No: 0
  num_band_members: 5, tiling_flag: 1
  index: 0, head: 0, body: 0, tail: 0, l1_size: 8, l1_flag: 1, l0_size: 65535, l0_flag: 0, seq: 0
  index: 1, head: 0, body: 0, tail: 0, l1_size: 4, l1_flag: 1, l0_size: 65535, l0_flag: 0, seq: 1
  index: 2, head: 0, body: 0, tail: 0, l1_size: 16, l1_flag: 1, l0_size: 65535, l0_flag: 0, seq: 2
  index: 3, head: 0, body: 0, tail: 0, l1_size: 16, l1_flag: 1, l0_size: 65535, l0_flag: 0, seq: 3
  index: 4, head: 0, body: 0, tail: 0, l1_size: 6, l1_flag: 1, l0_size: 65535, l0_flag: 0, seq: 4

  main
  prefix : no_   range: Range(min=0, extent=16)
  prefix : mo_   range: Range(min=0, extent=1)
  prefix : mi    range: Range(min=0, extent=1)
  prefix : ni    range: Range(min=0, extent=1)
  prefix : ko_   range: Range(min=0, extent=10)

  isolate
  prefix : no_   range: Range(min=0, extent=16)
  prefix : mo_   range: Range(min=0, extent=1)
  prefix : mi    range: Range(min=0, extent=1)
  prefix : ni    range: Range(min=0, extent=1)
  prefix : ko_   range: Range(min=0, extent=4)
   ***********************/
  // spec gemm set dim outer outer range
  std::vector<Range> range;
1205
  if (info_.user_config_.GetTileSizeIsVar()) {
C
ckey_Dou 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    // must equal to scop.cc
    const int t0_mo = 11;
    const int t0_ko = 13;
    const int t0_no = 17;
    range.emplace_back(Expr(0), floordiv(Var("NO") + t0_no - 1, t0_no));
    range.emplace_back(Expr(0), floordiv(Var("MO") + t0_mo - 1, t0_mo));
    range.emplace_back(Expr(0), Expr(1));
    range.emplace_back(Expr(0), Expr(1));
    range.emplace_back(Expr(0), floordiv(Var("KO") + t0_ko - 1, t0_ko));
  } else {
1216
    range = info_.cube_info_.GetRange(range_idx_);
C
ckey_Dou 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  }
  Map<std::string, Range> range_map;
  Map<std::string, VarExpr> axis_map;
  std::unordered_map<std::string, bool> outer_axis;
  // spec gemm outer outer axis prefix name
  std::vector<std::string> prefix = ConstructPrefix();
  // same with gemm construct IR
  CHECK(prefix.size() == range.size());
  Range axis_m_range;

1227
  CollectGemmRangeInfoNewAxis(range, prefix, outer_axis, axis_m_range, range_map, axis_map);
C
ckey_Dou 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

  std::vector<std::string> all_axis;
  all_axis.emplace_back("mo_");
  all_axis.emplace_back("no_");
  all_axis.emplace_back("ko_");
  for (const auto &i : all_axis) {
    if (outer_axis.find(i) == outer_axis.end()) {
      Range one(Expr(0), Expr(1));
      range_map.Set(i, one);
      if (i == "mo_") {
        axis_m_range = one;
      }
    }
  }
  /*************************************************
   * add m_size & m_larger_size
   * m_size: 49 = 3 * 16 + 1
   * m_larger_size: 64 = (3 + 1) * 16
   * **********************************/
  PartitionSingle *single = PartitionSingle::getInstance();
  if (single != nullptr) {
1249 1250
    if (!info_.user_config_.GetIsDynamic()) {
      CollectGemmMWSize(axis_m_range, range_map);
C
ckey_Dou 已提交
1251
    } else {
1252
      CollectGemmMWSizeDynamic(range_map);
C
ckey_Dou 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    }
  }
  stmt = AttrStmt::make(axis_map, "pragma_spec_gemm_attr", Expr(0), stmt);
  stmt = AttrStmt::make(range_map, "pragma_gemm_l0", Expr(range_idx_), stmt);
  range_idx_++;
  return stmt;
}

1261
void CCEIslEmitter::CollectGemmMWSize(Range &axis_m_range, Map<std::string, Range> &range_map) {
C
ckey_Dou 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
  std::map<std::string, Expr> fractal_int_info = PartitionSingle::getFractalInfo();
  CHECK(fractal_int_info.find(ATTR_CONV_GMM_M) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_TILE_M) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_M_INNER) != fractal_int_info.end());
  CHECK(fractal_int_info[ATTR_CONV_GMM_M].as<IntImm>());
  CHECK(fractal_int_info[ATTR_CONV_TILE_M].as<IntImm>());
  CHECK(fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>());
  if (fractal_int_info[ATTR_CONV_GMM_M].as<IntImm>()->value <
      fractal_int_info[ATTR_CONV_TILE_M].as<IntImm>()->value *
        fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value) {
    int64_t size = fractal_int_info[ATTR_CONV_GMM_M].as<IntImm>()->value;
    int64_t larger =
      fractal_int_info[ATTR_CONV_TILE_M].as<IntImm>()->value * fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value;
    CHECK(axis_m_range->min.as<IntImm>() != nullptr);
    CHECK(axis_m_range->extent.as<IntImm>() != nullptr);
    int64_t m_min = axis_m_range->min.as<IntImm>()->value;
    int64_t m_ext = axis_m_range->extent.as<IntImm>()->value;
    int m_CutSize = PartitionSingle::getCutM();
    m_CutSize = static_cast<int>(m_CutSize / fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value);
    int64_t cur_size = 0;
    int64_t cur_larger = 0;
    if (m_min == 0) {
      cur_larger = m_ext * m_CutSize * fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value;
      cur_size = cur_larger < size ? cur_larger : size;
    } else if (m_min > 0) {
      cur_size = size - m_min * m_CutSize * fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value;
      cur_larger = larger - m_min * m_CutSize * fractal_int_info[ATTR_CONV_M_INNER].as<IntImm>()->value;
    }
    range_map.Set("m_size", Range(Expr(0), Expr(cur_size)));
    range_map.Set("m_lager_size", Range(Expr(0), Expr(cur_larger)));
  } else {
    range_map.Set("m_size", Range(Expr(0), Expr(fractal_int_info[ATTR_CONV_GMM_M])));
    range_map.Set("m_lager_size", Range(Expr(0), Expr(fractal_int_info[ATTR_CONV_GMM_M])));
  }
  range_map.Set("w_size", Range(Expr(0), Expr(fractal_int_info[ATTR_CONV_M_CUT_SIZE])));
}

1299
void CCEIslEmitter::CollectGemmMWSizeDynamic(Map<std::string, Range> &range_map) {
C
ckey_Dou 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
  std::map<std::string, Expr> fractal_int_info = PartitionSingle::getFractalInfo();
  CHECK(fractal_int_info.find(ATTR_CONV_GMM_M) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_TILE_M) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_M_INNER) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_TILE_H) != fractal_int_info.end());
  CHECK(fractal_int_info.find(ATTR_CONV_TILE_W) != fractal_int_info.end());

  auto tile_h = fractal_int_info[ATTR_CONV_TILE_H];
  auto kernel_h = fractal_int_info[ATTR_CONV_KERNEL_H];
  auto stride_h = fractal_int_info[ATTR_CONV_STRIDE_H];
  auto win_h = floordiv(tile_h - kernel_h, stride_h) + 1;

  auto tile_w = fractal_int_info[ATTR_CONV_TILE_W];
  auto kernel_w = fractal_int_info[ATTR_CONV_KERNEL_W];
  auto stride_w = fractal_int_info[ATTR_CONV_STRIDE_W];
  auto win_w = floordiv(tile_w - kernel_w, stride_w) + 1;

  auto w = fractal_int_info[ATTR_CONV_FEATURE_W];
  auto pad_left = fractal_int_info[ATTR_CONV_PAD_LEFT];
  auto pad_right = fractal_int_info[ATTR_CONV_PAD_RIGHT];
  auto win_w_gm = floordiv(w + pad_left + pad_right - kernel_w, stride_w) + 1;

  range_map.Set("m_size", Range(Expr(0), win_h * win_w));
  range_map.Set("m_lager_size", Range(Expr(0), floordiv(win_h * win_w + 15, 16) * 16));
  range_map.Set("w_size", Range(Expr(0), win_w_gm));
}

std::string CCEIslEmitter::FindRealizeScopeToString(const isl::id &var) {
1328 1329
  if (info_.analysis_result_.CountBufferDefInfo(var)) {
    auto tensor_info = info_.analysis_result_.GetBufferDefInfo(var);
C
ckey_Dou 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    MemType mem_type = tensor_info.DstMemType();

    switch (mem_type) {
      case MemType::L1_:
        if (var.get_name().find("fractal_L1") != std::string::npos) return "local.L1_tmp";
        return "local.L1";
      case MemType::L0A_:
        return "local.L0A";
      case MemType::L0B_:
        return "local.L0B";
      case MemType::L0C_:
        return "local.L0C";
      case MemType::UB_:
        return "local.UB";
      case MemType::UBL0_:
        return "local.UB";
      case MemType::UBL1_:
        return "local.UB";
      default:
        LOG(FATAL) << "unexpected mem_type of var " << var;
        return "ERROR";
    }
  }
  // GEMM C_local_UB is global
  if (var.get_name().find("_local_UB") != std::string::npos) {
    return "local.UB";
  }

  return "";
}

Expr CCEIslEmitter::FindRealizeScope(const isl::id &var) { return Expr(FindRealizeScopeToString(var)); }

Stmt CCEIslEmitter::InsertRealize(Stmt stmt, const isl::id &var, bool is_L0) {
  if (var.get_name().find("_local_") == std::string::npos) {
    LOG(WARNING) << "Realize a tensor " << var.get_name() << " that should be declared in bind. Please check";
  }

  stmt = FindInnerRealize(var.get_name()).Mutate(stmt);

  // A tensor may be defined multiple times in BufferDefInfo due to nested realize.
  // Because we cannot determine which one we actually want, we have to be conservative here
  // and allocate space for the largest shape to avoid overflow.
1373
  Tensor t = info_.FindTensorWithLargestShape(var);
C
ckey_Dou 已提交
1374 1375
  Region bounds;

1376 1377
  if (info_.cube_info_.IsCUB(var.get_name())) {
    auto ct = info_.FindTensor(var.get_name() + "_local_L0C");
C
ckey_Dou 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    for (auto j : ct->shape) {
      bounds.push_back(Range::make_by_min_extent(Expr(0), j));
    }
  }
  // no isolate
  if (bounds.empty()) {
    for (auto j : t->shape) {
      bounds.push_back(Range::make_by_min_extent(Expr(0), j));
    }
  }

  // If isolate, make a new buffer
1390
  auto buf = info_.user_config_.GetBind().at(t);
C
ckey_Dou 已提交
1391 1392 1393 1394
  auto tt = placeholder(t->shape, t->dtype, t->op->name);

  stmt = TensorSubstitute(stmt, t->op, tt->op, tt->value_index);
  t = tt;
1395 1396
  if (info_.analysis_result_.CountBufferDefInfo(var)) {
    auto decl = info_.analysis_result_.GetBufferDefInfo(var);
C
ckey_Dou 已提交
1397 1398
    decl.tensor = t;
  }
1399
  info_.user_config_.SetBind(t, buf);
C
ckey_Dou 已提交
1400

1401
  if (!info_.cube_info_.IsIm2col()) {
C
ckey_Dou 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
    stmt = TensorSubstitute2(stmt, t->op->func_name(), t->op, t->value_index);
  }

  // If pragma_fuse_vector is next, this realize may be vector realize. We move it inside of pragma_fuse_vector.
  if (auto attrstmt = stmt.as<AttrStmt>()) {
    if (attrstmt && attrstmt->attr_key == "pragma_fuse_vector") {
      stmt = attrstmt->body;
      stmt = Realize::make(t->op, t->value_index, t->dtype, bounds, const_true(1), stmt);
      realized_.insert(t);
1411
      stmt = AttrStmt::make(t->op, air::ir::attr::realize_scope, FindRealizeScope(var), stmt);
C
ckey_Dou 已提交
1412 1413 1414 1415 1416

      return AttrStmt::make(make_zero(Int(32)), "pragma_fuse_vector", Expr(1), stmt);
    }
  }

1417 1418
  if (info_.cube_info_.IsIm2col()) {
    for (const auto &curTensor : info_.analysis_result_.GetUpdateTensor()) {
C
ckey_Dou 已提交
1419 1420 1421 1422
      // find the updateTensor with same name and make Realize and AttrStmt
      if (curTensor->op->name == t->op->name) {
        stmt = Realize::make(curTensor->op, t->value_index, t->dtype, bounds, const_true(1), stmt);
        realized_.insert(t);
1423
        stmt = AttrStmt::make(curTensor->op, air::ir::attr::realize_scope, FindRealizeScope(var), stmt);
C
ckey_Dou 已提交
1424 1425 1426 1427 1428 1429
        return stmt;
      }
    }
  }
  stmt = Realize::make(t->op, t->value_index, t->dtype, bounds, const_true(1), stmt);
  realized_.insert(t);
1430
  stmt = AttrStmt::make(t->op, air::ir::attr::realize_scope, FindRealizeScope(var), stmt);
C
ckey_Dou 已提交
1431 1432 1433 1434

  return stmt;
}

1435
Stmt HoistL0write(ScopInfo &info, const Stmt &body, std::vector<Stmt> &l0write) {
C
ckey_Dou 已提交
1436 1437
  Stmt stmt = body;
  if (!l0write.empty()) {
1438 1439
    if (info.cube_info_.IsGemm()) {
      auto f = HoistL0Write(info.user_config_.GetOriginBind(), l0write.back());
C
ckey_Dou 已提交
1440 1441 1442 1443
      static_cast<void>(f.Mutate(body));
      f.mutate_ = true;
      stmt = f.Mutate(body);
      if (!f.found_) stmt = Block::make(body, l0write.back());
1444
    } else if (info.cube_info_.IsSpecGemm()) {
C
ckey_Dou 已提交
1445 1446 1447 1448 1449 1450
      stmt = Block::make(body, l0write.back());
    }
  }
  return stmt;
}

1451
void CCEIslEmitter::ProcBypassL1(const ScopInfo &info) {
C
ckey_Dou 已提交
1452
  if (0 == bypassL1_) {
1453
    bypassL1_ = info.user_config_.GetByPassL1();
C
ckey_Dou 已提交
1454 1455 1456 1457 1458 1459 1460
  }
}

Stmt CCEIslEmitter::EmitSpecGemL1write(const isl::ast_node_mark &node, const Stmt &stmt) {
  is_old_gemm_l1write_ = true;
  static_cast<void>(EmitAst(node.get_node()));
  is_old_gemm_l1write_ = false;
1461 1462
  if (!info_.cube_info_.IsSpecGemm() && !info_.cube_info_.GetOldL1Write().empty()) {
    return Block::make(stmt, info_.cube_info_.GetOldL1Write().back());
C
ckey_Dou 已提交
1463 1464 1465 1466 1467 1468 1469
  }
  return stmt;
}

void CCEIslEmitter::EmitAttrStmtAfterRealize(bool is_L1, bool is_L0, std::vector<Stmt> &stmts) {
  // Emit attrs of provide
  if (is_L1) {
1470
    for (const auto &i : info_.analysis_result_.GetStmtOpInfoMap()) {
C
ckey_Dou 已提交
1471
      if (!i.second.isCube) continue;
1472
      const Node *stmt_node = info_.analysis_result_.GetStatementMap().at(i.first);
C
ckey_Dou 已提交
1473 1474
      if (!stmt_node->IsInstance<Provide>()) continue;
      const auto provide = static_cast<const Provide *>(stmt_node);
1475 1476
      if (!info_.cube_info_.GetConvAttrInfo().empty()) {
        stmts[0] = AttrStmt::make(info_.cube_info_.GetConvAttrInfo(), "pragma_attrs", Expr(1), stmts[0]);
C
ckey_Dou 已提交
1477 1478 1479 1480 1481 1482 1483 1484
      } else if (const auto cop = provide->func.as<ComputeOpNode>()) {
        stmts[0] = AttrStmt::make(cop->attrs, "pragma_attrs", Expr(1), stmts[0]);
      }
      stmts[0] = AttrStmt::make(make_zero(Int(32)), "isolated_idx", Expr(tile_idx_++), stmts[0]);
      break;
    }
  }

1485 1486
  if (info_.cube_info_.IsSpecGemm() && is_L0) {
    if (info_.user_config_.GetConvBackPropFilter()) {
C
ckey_Dou 已提交
1487 1488 1489 1490 1491 1492 1493 1494
      stmts[0] = EmitGemmRangeInfoBackPropFilter(stmts[0]);
    } else {
      stmts[0] = EmitGemmRangeInfo(stmts[0]);
    }
  }
}

void CCEIslEmitter::GemmTranspose(std::vector<Stmt> &stmts) {
1495 1496 1497
  if (info_.cube_info_.IsGemmDataTranspose()) {
    bool transBlock = !info_.cube_info_.IsGemmDataTransposeInnerBlock();
    bool transIn = !info_.cube_info_.IsGemmDataTransposeBlock();
C
ckey_Dou 已提交
1498 1499
    stmts[0] = TransposeLoopVarOrderInMad().Run(stmts[0], "_L1_local_L0A", transBlock, transIn);
  }
1500 1501 1502
  if (info_.cube_info_.IsGemmWeightTranspose()) {
    bool transBlock = !info_.cube_info_.IsGemmWeightTransposeInnerBlock();
    bool transIn = !info_.cube_info_.IsGemmWeightTransposeBlock();
C
ckey_Dou 已提交
1503 1504 1505 1506
    stmts[0] = TransposeLoopVarOrderInMad().Run(stmts[0], "_L1_local_L0B", transBlock, transIn);
  }
}

1507 1508 1509 1510 1511 1512
void CCEIslEmitter::EmitReadAttrAtL0(std::vector<Stmt> &stmts, int i, Tensor &t) {
  bool is_im2col = false;
  bool is_filter_l0 = false;
  bool is_gemm_data_trans = false;
  bool is_gemm_weight_trans = false;
  if (info_.cube_info_.IsSpecGemm()) {
C
ckey_Dou 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    // this case is conv gemm
    if (t->op->name.find("_fractal_L1_local_L0A") != std::string::npos ||
        t->op->name.find("_fractal_L1_local_L0B") != std::string::npos) {
      is_im2col = true;
    }

    if (t->op->name.find("_local_L1_local_L0B") != std::string::npos ||
        t->op->name.find("_local_L1_local_L0A") != std::string::npos) {
      is_filter_l0 = true;
    }
1523
  } else {
C
ckey_Dou 已提交
1524
    // this case is ordinary gemm
1525 1526
    std::string data_trans = info_.cube_info_.ExtractStringFromAttrsAndInfo(ATTR_GEMM_DATA_TRANSPOSE);
    std::string weight_trans = info_.cube_info_.ExtractStringFromAttrsAndInfo(ATTR_GEMM_WEIGHT_TRANSPOSE);
C
ckey_Dou 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    size_t pos1 = t->op->name.find("_L1_local_L0A");
    size_t pos2 = t->op->name.find("_L1_local_L0B");
    if (data_trans == "Y" && pos1 != std::string::npos) {
      is_gemm_data_trans = true;
    }
    if (weight_trans == "Y" && pos2 != std::string::npos) {
      is_gemm_weight_trans = true;
    }

    if (bypassL1_ == 2) {
      //  left matrix by pass L1
      if (pos1 != std::string::npos) is_filter_l0 = true;
    } else if (bypassL1_ == 1) {
      // right matrix by pass L1
      if (pos2 != std::string::npos) is_filter_l0 = true;
    }
  }
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

  if (is_im2col) {
    stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_im2col", Expr(1), stmts[i]);
  } else if (is_gemm_data_trans) {
    stmts[i] =
      AttrStmt::make(make_zero(Int(32)), "pragma_load2d_transpose_data", Expr(gemm_transpose_index_), stmts[i]);
    gemm_transpose_index_++;
    gemm_transpose_index_ = gemm_transpose_index_ % 2;
  } else if (is_gemm_weight_trans) {
    stmts[i] =
      AttrStmt::make(make_zero(Int(32)), "pragma_load2d_transpose_weight", Expr(gemm_transpose_index_), stmts[i]);
    gemm_transpose_index_++;
    gemm_transpose_index_ = gemm_transpose_index_ % 2;
  }
  stmts[i] = ProducerConsumer::make(t->op, true, stmts[i]);
  if (bypassL1_ > 0) {
    if (is_filter_l0) {
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_bypass_filter_l0", Expr(0), stmts[i]);
    }
  }
C
ckey_Dou 已提交
1564 1565
}

1566 1567 1568 1569 1570
void CCEIslEmitter::EmitReadAttrAtL1(std::vector<Stmt> &stmts, int i, Tensor &t) {
  bool is_fractal = false;
  bool is_filter_l1 = false;
  std::string fractal_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_FEATURE_NAME) + "_fractal_L1";
  std::string filter_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_FILTER_NAME) + "_local_L1";
C
ckey_Dou 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579

  if (fractal_str == t->op->name) {
    is_fractal = true;
  }

  if (filter_str == t->op->name) {
    is_filter_l1 = true;
  }

1580 1581
  std::string data_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_GMM_FEATURE) + "_local_L1";
  std::string weight_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_GMM_WEIGHT) + "_local_L1";
C
ckey_Dou 已提交
1582 1583 1584
  if ((bypassL1_ == 2 && data_str == t->op->name) || (bypassL1_ == 1 && weight_str == t->op->name)) {
    is_filter_l1 = true;
  }
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

  if (is_fractal) {
    stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_fractal", Expr(1), stmts[i]);
  }
  stmts[i] = ProducerConsumer::make(t->op, true, stmts[i]);
  if (bypassL1_ > 0) {
    if (is_filter_l1) {
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_bypass_filter_l1", Expr(0), stmts[i]);
    }
  }
}

void CCEIslEmitter::EmitReadAttr(const std::vector<IslIdSet> &read, std::vector<Stmt> &stmts, int i, bool is_L1,
                                 bool is_L0) {
  for (const auto &id : read[i]) {
    Tensor t = info_.FindTensor(id);
    if (is_L1) {
      EmitReadAttrAtL1(stmts, i, t);
    }

    if (is_L0) {
      EmitReadAttrAtL0(stmts, i, t);
    }
  }
C
ckey_Dou 已提交
1609 1610
}

1611 1612 1613 1614
void CCEIslEmitter::EmitWriteAttr(const std::vector<IslIdSet> &write, std::vector<Stmt> &stmts, int i, bool is_L1) {
  for (const auto &id : write[i]) {
    if (is_L1 && info_.cube_info_.IsCUB(id.get_name())) continue;
    if (is_old_gemm_l1write_ && info_.cube_info_.IsC(id.get_name())) {
C
ckey_Dou 已提交
1615
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_cube_l1write", Expr(1), stmts[i]);
1616
      info_.cube_info_.OldL1WriteInsert(stmts[i]);
C
ckey_Dou 已提交
1617
    }
1618
    if (info_.cube_info_.IsSpecGemm() && info_.cube_info_.IsC(id.get_name())) {
C
ckey_Dou 已提交
1619 1620 1621 1622
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_cube_l0write", Expr(1), stmts[i]);
      cube_l0write_.emplace_back(stmts[i]);
      stmts[i] = Evaluate::make(0);
    }
1623
    if (info_.cube_info_.IsGemm() && !info_.cube_info_.IsSpecGemm() && info_.cube_info_.IsCUB(id.get_name())) {
C
ckey_Dou 已提交
1624 1625 1626 1627
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_cube_l0write", Expr(1), stmts[i]);
      cube_l0write_.emplace_back(stmts[i]);
      stmts[i] = Evaluate::make(0);
    }
1628
    if (info_.cube_info_.IsGemm() && !info_.cube_info_.IsSpecGemm() && info_.cube_info_.IsC(id.get_name())) {
C
ckey_Dou 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
      stmts[i] = AttrStmt::make(make_zero(Int(32)), "pragma_cube_l1write", Expr(1), stmts[i]);
      if (!cube_l0write_.empty()) {
        cube_l0write_.emplace_back(Block::make(cube_l0write_[0], stmts[i]));
        stmts[i] = Evaluate::make(0);
      }
    }
  }
}

void CCEIslEmitter::EmitAttrStmt(const isl::ast_node_block &block_node, const Liveness &liveness, bool is_L1,
                                 bool is_L0, std::vector<Stmt> &stmts) {
  for (unsigned int i = 0; i < block_node.get_children().size(); ++i) {
1641 1642
    EmitReadAttr(liveness.read_, stmts, i, is_L1, is_L0);
    EmitWriteAttr(liveness.write_, stmts, i, is_L1);
C
ckey_Dou 已提交
1643 1644 1645
  }
}

1646 1647 1648
void CCEIslEmitter::CollectLiveness(const Liveness &liveness_info, bool is_L1, std::vector<IslIdSet> &real,
                                    std::unordered_map<isl::id, std::set<int>, isl::IslIdIslHash> &liveness,
                                    std::function<bool(const std::string &id)> const &CheckGoOut) {
C
ckey_Dou 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
  for (unsigned int i = 0; i < liveness_info.read_.size(); i++) {
    IslIdSet idset;
    real.push_back(idset);
    auto v = static_cast<int>(i);
    // add read
    for (const auto &j : liveness_info.read_[i]) {
      if (!liveness.count(j)) {
        std::set<int> jset;
        liveness.emplace(j, jset);
      }
      liveness.at(j).insert(v);
    }

    // add from inner out
    for (const auto &j : liveness_info.out_[i]) {
      if (!liveness.count(j)) {
        std::set<int> jset;
        liveness.emplace(j, jset);
      }
      liveness.at(j).insert(v);
    }

    // add vectors' def
    for (const auto &j : liveness_info.may_def_[i]) {
      // for i
      //   if i == 0
      //     C=0     // def C
      //   for j
      //     C=C+A*B  // WAR C
      // cause we do not know C=0 cannot dominate the following WAR
      // The C' liveness will cover the whole loops and realize out of loops.
      // Now we just judge whole loop's liveness from existing WAR.
      // It is correct in gemm, conv etc. but may be wrong in other cases.

1683 1684
      std::string tensor_name = info_.GetOriginTensorId(j).get_name();
      if (info_.MayWriteAfterRead(tensor_name) && CheckGoOut(j.get_name())) {
C
ckey_Dou 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693
        realize_out_.insert(j);
      }
      if (!liveness.count(j)) {
        std::set<int> jset;
        liveness.emplace(j, jset);
      }
      liveness.at(j).insert(v);
    }
    for (const auto &j : liveness_info.write_[i]) {
1694
      if (!info_.IsInBinds(j) && CheckGoOut(j.get_name())) realize_out_.insert(j);
C
ckey_Dou 已提交
1695 1696 1697 1698 1699 1700 1701
    }

    // isolated part, may reuse def in full tile. We realize them out
    for (const auto &j : liveness_info.use_with_may_def_[i]) {
      if (CheckGoOut(j.get_name())) realize_out_.insert(j);
    }
  }
1702 1703 1704 1705 1706 1707 1708
  /// amazing and fusing control: which should be realized out
  if (is_L1) realize_out_.clear();

  for (const auto &i : liveness) {
    if (realize_out_.count(i.first)) continue;
    real[(unsigned int)*i.second.begin()].insert(i.first);
  }
C
ckey_Dou 已提交
1709 1710 1711 1712 1713 1714 1715
}

// add realize
// so far we do not think about flow analysis for liveness
// we hack gemm C+=A*B and make C's liveness in the whole loop
void CCEIslEmitter::EmitRealize(const isl::ast_node_block &block_node, const Liveness &liveness_info, bool is_L1,
                                bool is_L0, std::vector<Stmt> &stmts) {
1716
  auto c_ub = info_.cube_info_.IsSpecGemm() ? info_.cube_info_.GetCName() : info_.cube_info_.GetCName() + "_local_UB";
C
ckey_Dou 已提交
1717 1718 1719
  auto c_l0c = c_ub + "_local_L0C";
  auto CheckGoOut = [&c_ub, &c_l0c](const std::string &id) -> bool { return !(id == c_ub || id == c_l0c); };

1720 1721 1722
  std::vector<IslIdSet> real;
  std::unordered_map<isl::id, std::set<int>, isl::IslIdIslHash> liveness;
  CollectLiveness(liveness_info, is_L1, real, liveness, CheckGoOut);
C
ckey_Dou 已提交
1723 1724 1725 1726

  size_t last = block_node.get_children().size() - 1;
  for (const auto &var : real[last]) {
    /// so far our alloc_C is only designed for specgemm
1727
    if (info_.cube_info_.IsSpecGemm() || info_.cube_info_.IsConv()) {
C
ckey_Dou 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
      if (!CheckGoOut(var.get_name())) continue;
    }

    stmts[last] = InsertRealize(stmts[last], var, is_L0);
  }

  for (int i = block_node.get_children().size() - 2; i >= 0; --i) {
    auto p = static_cast<unsigned int>(i);
    stmts[p] = Block::make(stmts[p], stmts[p + 1]);

    for (const auto &var : real[p]) {
      /// so far our alloc_C is only designed for specgemm
1740
      if (info_.cube_info_.IsSpecGemm() || info_.cube_info_.IsConv()) {
C
ckey_Dou 已提交
1741 1742 1743 1744 1745 1746
        if (!CheckGoOut(var.get_name())) continue;
      }

      stmts[p] = InsertRealize(stmts[p], var, is_L0);

      if (!DELETE_FRACTAL) continue;
1747
      std::string feature_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_FEATURE_NAME) + "_local_L1";
C
ckey_Dou 已提交
1748
      if (feature_str == var.get_name()) {
1749
        std::string fractal_str = info_.cube_info_.ExtractStringFromAttrs(ATTR_CONV_FEATURE_NAME) + "_fractal_L1";
C
ckey_Dou 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        stmts[p] = InsertRealize(stmts[p], isl::id(var.ctx(), fractal_str), is_L0);
      }
    }
  }
}

Stmt CCEIslEmitter::EmitBlock(const isl::ast_node_block &block_node) {
  if (!args_) return IslEmitter::EmitBlock(block_node);
  bool is_L0 = *static_cast<const bool *>(args_);
  bool is_L1 = *(static_cast<const bool *>(args_) + 1);
  args_ = nullptr;

  realize_must_def_.clear();
  realize_may_def_.clear();
  realize_use_.clear();
  for (const auto &i : realize_out_) {
    global_realize_out_.insert(i);
  }
  realize_out_.clear();
  hoisted_read_.clear();
  hoisted_write_.clear();

  std::vector<Stmt> stmts;
  auto liveness = Liveness();

  // collect info for each child node
  for (auto child : block_node.get_children()) {
    is_cube_ = false;
    Stmt body = (EmitAst(child));

    if (is_cube_) {
      body = MadMarker().Run(body);
      body = IfThenElseSplitter().Run(body);
      opinfo_.ops.clear();
      opinfo_.isCube = false;
    }
    stmts.push_back(body);

    liveness.may_def_.push_back(realize_may_def_);
    liveness.must_def_.push_back(realize_must_def_);
    liveness.use_.push_back(realize_use_);
    liveness.use_with_may_def_.push_back(realize_use_with_may_def_);
    liveness.out_.push_back(realize_out_);
    liveness.read_.push_back(hoisted_read_);
    liveness.write_.push_back(hoisted_write_);

    realize_must_def_.clear();
    realize_may_def_.clear();
    realize_use_.clear();
    realize_out_.clear();
    hoisted_read_.clear();
    hoisted_write_.clear();
  }

  EmitAttrStmt(block_node, liveness, is_L1, is_L0, stmts);
  EmitRealize(block_node, liveness, is_L1, is_L0, stmts);
  EmitAttrStmtAfterRealize(is_L1, is_L0, stmts);
  GemmTranspose(stmts);
  args_ = nullptr;
  return stmts[0];
}

void CCEIslEmitter::ConvBackPropFilterFixMadInit(const isl::ast_node_mark &node, Expr &mad_init_cond) {
1813
  if (info_.cube_info_.IsConvBackpropFilter()) {
C
ckey_Dou 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    /// find reduce k;
    /// correct axles' name
    FindStmt fs = FindStmt();
    fs.FindAst(node.get_node());

    for (const auto &i : fs.usernodes) {
      CHECK(i.get_expr().isa<isl::ast_expr_op>());
      isl::ast_expr_op usr_expr = i.get_expr().as<isl::ast_expr_op>();
      CHECK(usr_expr.get_arg(0).isa<isl::ast_expr_id>());
      isl::id curstmtid = usr_expr.get_arg(0).as<isl::ast_expr_id>().get_id();
      isl::id curnodeid = i.get_annotation();
1825
      const Node *stmt_node = info_.analysis_result_.GetStatementMap().at(curstmtid);
C
ckey_Dou 已提交
1826 1827 1828 1829 1830
      CHECK(stmt_node != nullptr);

      // stmt_node should not have if stmt
      if (stmt_node->IsInstance<Provide>()) {
        auto build = node_info_map_.at(curnodeid).build;
1831
        auto tuple = info_.analysis_result_.GetOperatorDomainMap().at(curstmtid).tuple;
C
ckey_Dou 已提交
1832 1833 1834 1835 1836
        auto iterator_map = node_info_map_.at(curnodeid).iterator_map;

        for (unsigned int n = 0; n < tuple.size(); n++) {
          isl::id isl_old_iter = tuple.get_id(n);
          bool is_red = false;
1837
          for (const auto &reds : info_.analysis_result_.GetReduceMap()) {
C
ckey_Dou 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
            for (auto j : reds.second) {
              // when support atomic add, "no" should not init in each core
              if (isl_old_iter.get_name() == j->var->name_hint && isl_old_iter.get_name() != "no") {
                is_red = true;
                break;
              }
            }
          }
          if (!is_red) continue;
          auto isl_expr = build.expr_from(iterator_map.get_pw_aff(n));
          Expr halide_new_iter = Interpret(isl_expr);
          std::vector<const Variable *> vv = ExtractIterfromExpr().Run(halide_new_iter);

          for (auto v : vv) {
            if (std::find(iters_.begin(), iters_.end(), v) == iters_.end()) continue;
            if (mad_init_cond.defined()) {
              mad_init_cond = And::make(mad_init_cond, EQ::make(Expr(GetObjPtr(v)), Expr(0)));
            } else {
              mad_init_cond = EQ::make(Expr(GetObjPtr(v)), Expr(0));
            }
          }
        }
      } else {
        LOG(WARNING) << "stmt_node has if stmt";
      }
    }
  }
}

Stmt CCEIslEmitter::EmitMarkFuseVector(const isl::ast_node_mark &node) {
  auto stmt = AttrStmt::make(make_zero(Int(32)), "pragma_fuse_vector", Expr(1), EmitAst(node.get_node()));
1869
  if (info_.cube_info_.IsGemm() && !info_.cube_info_.IsSpecGemm() && !cube_l0write_.empty()) {
C
ckey_Dou 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    cube_l0write_.emplace_back(Block::make(cube_l0write_[0], stmt));
    stmt = Evaluate::make(0);
  }
  return stmt;
}

Stmt CCEIslEmitter::EmitMarkAllocRealizeOut(const isl::ast_node_mark &node) {
  Stmt body = EmitAst(node.get_node());
  for (const auto &i : realize_out_) {
    body = InsertRealize(body, i, false);
  }
  realize_out_.clear();
  body = AttrStmt::make(make_zero(Int(32)), ALLOC_REALIZE_OUT, Expr(1), body);
  return body;
}

Stmt CCEIslEmitter::EmitMarkAllocC(const isl::ast_node_mark &node) {
  Stmt body = EmitAst(node.get_node());
  body = RemoveNoOp(body);
1889
  body = HoistL0write(info_, body, cube_l0write_);
C
ckey_Dou 已提交
1890

1891
  auto c_ub = info_.cube_info_.IsSpecGemm() ? info_.cube_info_.GetCName() : info_.cube_info_.GetCName() + "_local_UB";
C
ckey_Dou 已提交
1892
  auto c_l0c = c_ub + "_local_L0C";
1893 1894
  body = InsertRealize(body, isl::id(info_.GetCtx(), c_l0c), false);
  body = InsertRealize(body, isl::id(info_.GetCtx(), c_ub), false);
C
ckey_Dou 已提交
1895 1896 1897 1898 1899
  body = AttrStmt::make(make_zero(Int(32)), ALLOC_C, Expr(1), body);
  return body;
}

Stmt CCEIslEmitter::EmitMarkSpecGemm(const isl::ast_node_mark &node) {
1900
  info_.cube_info_.UpdateFractalIntInfo(++isolate_idx_);
C
ckey_Dou 已提交
1901 1902
  Expr mad_init_cond;
  ConvBackPropFilterFixMadInit(node, mad_init_cond);
1903
  if (info_.cube_info_.GetOutReduceInit() == 0) {
C
ckey_Dou 已提交
1904 1905
    mad_init_cond = Expr(0);
  }
1906
  Stmt stmt = SpecGemmBuilder(info_).Build(mad_init_cond);
C
ckey_Dou 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
  return EmitSpecGemL1write(node, stmt);
}

Stmt CCEIslEmitter::EmitMark(const isl::ast_node_mark &node) {
  auto original_multicore_info = multicore_info;

  std::string mark = node.get_id().get_name();
  bool is_outer_band = (mark.find("multicore_coincident_") == 0);
  if (is_outer_band) {
    multicore_info.enabled = true;
    size_t coinLen = strlen("multicore_coincident_");
    CHECK_GE(mark.size(), coinLen);
    std::string coincidence_str = mark.substr(coinLen);
    multicore_info.coincidence = SplitString(coincidence_str, "_");
    CHECK_GT(multicore_info.coincidence.size(), 0) << "invalid multicore mark: " << mark;
  }

  bool is_inner_band = (mark.find("realize") == 0);
  if (is_inner_band) {
    multicore_info.enabled = false;
  }

  Stmt stmt = EmitMarkMulticore(node);

  multicore_info = original_multicore_info;
  return stmt;
}

void CCEIslEmitter::RealizeOut() {
  // add vectors' def
  for (const auto &j : realize_must_def_) {
    // we lack CFG or SSA here. Such as Gemm,
    // for i
    //   if i == 0
    //     C=0     // def C
    //   for j
    //     C=C+A*B  // WAR C
    // cause we do not know C=0 cannot dominate the following WAR
    // The C' liveness will cover the whole loops and realize out of loops.
    // Now we just judge whole loop's liveness from existing WAR.
    // It is correct in gemm, conv etc. but may be wrong in other cases.

1949 1950
    std::string tensor_name = info_.GetOriginTensorId(j).get_name();
    if (info_.MayWriteAfterRead(tensor_name)) {
C
ckey_Dou 已提交
1951
      bool do_out = true;
1952 1953
      auto c_ub =
        info_.cube_info_.IsSpecGemm() ? info_.cube_info_.GetCName() : info_.cube_info_.GetCName() + "_local_UB";
C
ckey_Dou 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
      auto c_l0c = c_ub + "_local_L0C";
      if (j.get_name() == c_ub || j.get_name() == c_l0c) {
        do_out = false;
      }
      if (do_out) realize_out_.insert(j);
    }
  }

  /// isolated part, may reuse def in full tile. We realize them out
  for (const auto &j : realize_use_with_may_def_) {
    global_realize_out_.insert(j);
  }

  realize_must_def_.clear();
  realize_may_def_.clear();
  realize_use_.clear();
  realize_use_with_may_def_.clear();
  realize_out_.clear();
  hoisted_read_.clear();
  hoisted_write_.clear();
};

Stmt CCEIslEmitter::EmitMarkMulticore(const isl::ast_node_mark &node) {
  auto mark_name = node.get_id().get_name();
  if (mark_name == FUSE_VECTOR) return EmitMarkFuseVector(node);
  if (mark_name == ALLOC_REALIZE_OUT) return EmitMarkAllocRealizeOut(node);
  if (mark_name == ALLOC_C) return EmitMarkAllocC(node);
#if SPEC_GEMM
  if (mark_name == CONV_GEMM) return EmitMarkSpecGemm(node);
#endif
  if (node.get_node().as<isl::ast_node_mark>()) return EmitAst(node.get_node());
  if (node.get_node().as<isl::ast_node_for>()) {
    is_cube_ = false;
    return EmitAst(node.get_node());
  }

  if (auto block_node = node.get_node().as<isl::ast_node_block>()) {
    bool is_L0 = (node.get_id().get_name() == REALIZE_L0);
    bool is_L1 = (node.get_id().get_name() == REALIZE_L1);
    bool is_UB = (node.get_id().get_name() == REALIZE_UB);
    std::unique_ptr<bool[]> args_tmp(new bool[3]{is_L0, is_L1, is_UB});
    args_ = args_tmp.get();
    return EmitBlock(block_node);
  } else if (node.get_node().as<isl::ast_node_if>()) {
    auto stmt = EmitAst(node.get_node());
    for (const auto &var : realize_must_def_) {
2000
      Tensor t = info_.FindTensor(var);
C
ckey_Dou 已提交
2001 2002 2003 2004 2005
      Region bounds;
      for (auto j : t->shape) {
        bounds.push_back(Range::make_by_min_extent(Expr(0), j));
      }
      stmt = Realize::make(t->op, t->value_index, t->dtype, bounds, const_true(1), stmt);
2006
      stmt = AttrStmt::make(t->op, air::ir::attr::realize_scope, Expr("local.L1"), stmt);
C
ckey_Dou 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    }
    return stmt;
  } else {
    is_cube_ = false;
    Stmt body = EmitAst(node.get_node());
    if (is_cube_) {
      body = MadMarker().Run(body);
      body = IfThenElseSplitter().Run(body);
      opinfo_.ops.clear();
      opinfo_.isCube = false;
    }
    RealizeOut();
    return body;
  }
  return EmitAst(node.get_node());
}

class FindUsingTensor : public IRVisitor {
 public:
  explicit FindUsingTensor(Stmt &stmt) : stmt_(stmt) {}
  ~FindUsingTensor() override = default;

  void Visit_(const Call *op) final {
    if (op->call_type == Call::Halide && op->func->func_name() == name_) {
      found_ = true;
    }
    IRVisitor::Visit_(op);
  }

  void Visit_(const Provide *op) final {
    if (op->func->func_name() == name_) {
      found_ = true;
    }
    IRVisitor::Visit_(op);
  }

  bool found(const std::string &name) {
    name_ = name;
    IRVisitor::Visit(stmt_);
    return found_;
  }

 private:
  Stmt &stmt_;
  std::string name_;
  bool found_{false};
};

2055
class FindNotRealizedTensors : public air::ir::IRVisitor {
C
ckey_Dou 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
 public:
  void Visit_(const Call *op) final {
    if (op->call_type == Call::Halide && realized_in_scope.count(op->func->func_name()) == 0) {
      non_realized_.insert(op->func->func_name());
    }
    IRVisitor::Visit_(op);
  }

  void Visit_(const Provide *op) final {
    if (realized_in_scope.count(op->func->func_name()) == 0) {
      non_realized_.insert(op->func->func_name());
    }
    IRVisitor::Visit_(op);
  }

  void Visit_(const Realize *op) final {
    std::string realize_var = op->func->func_name();
    realized_in_scope.insert(realize_var);
    IRVisitor::Visit_(op);
    realized_in_scope.erase(realize_var);
  }

  void Visit_(const AttrStmt *op) final {
    if (op->attr_key == "pragma_emit_insn" && op->value.as<StringImm>() && op->value.as<StringImm>()->value == "mad") {
      has_cube_ = true;
    }
    IRVisitor::Visit_(op);
  }

  std::unordered_set<std::string> Find(const Stmt &stmt) {
    non_realized_.clear();
    realized_in_scope.clear();
    has_cube_ = false;
    Visit(stmt);
    if (has_cube_) {
      non_realized_.clear();
    }
    return non_realized_;
  }

 private:
  std::unordered_set<std::string> non_realized_;
  std::unordered_set<std::string> realized_in_scope;
  bool has_cube_{false};
};

class RmCondwithVar : public IRMutator {
 public:
  explicit RmCondwithVar(std::set<const Variable *> &rmif) : rmif_(rmif) {}
  ~RmCondwithVar() override = default;
  Expr Mutate_(const And *op, const Expr &e) final {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (!a.defined() && !b.defined()) return Expr();
    if (!a.defined()) return b;
    if (!b.defined()) return a;
    return IRMutator::Mutate_(op, e);
  }
  Expr Mutate_(const Or *op, const Expr &e) final {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (!a.defined() && !b.defined()) return Expr();
    if (!a.defined()) return b;
    if (!b.defined()) return a;
    return IRMutator::Mutate_(op, e);
  }
  Expr Mutate_(const EQ *op, const Expr &e) final {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    CHECK(a.defined());
    const auto v = static_cast<const Variable *>(a.get());
    if (v && rmif_.count(v)) {
      for (auto i : rmcond_) {
        if (i.same_as(e)) return Expr();
      }
      rmcond_.push_back(e);
      return Expr();
    }
    CHECK(b.defined());
    return (a.same_as(op->a) && b.same_as(op->b)) ? e : EQ::make(a, b);
  }

  std::set<const Variable *> rmif_;
  Array<Expr> rmcond_;
};

class RmCond : public IRMutator {
 public:
  explicit RmCond(std::set<const Variable *> &rmif) : rmif_(rmif) {}
  ~RmCond() override = default;

  Stmt Mutate_(const IfThenElse *op, const Stmt &s) final {
    Expr condition = this->Mutate(op->condition);
    // judge rm if for atomic add
    condition = Simplify(condition);
    auto rmcond = RmCondwithVar(rmif_);
    condition = rmcond.Mutate(condition);
    if (!condition.defined()) condition = Expr(1);
    condition = Simplify(condition);

    Stmt then_case = this->Mutate(op->then_case);
    Stmt else_case;
    if (op->else_case.defined()) else_case = this->Mutate(op->else_case);
    if (condition.same_as(op->condition) && then_case.same_as(op->then_case) && else_case.same_as(op->else_case))
      return s;
    auto res = IfThenElse::make(condition, then_case, else_case);
    if (!rmcond.rmcond_.empty()) res = AttrStmt::make(rmcond.rmcond_, ATOMIC_COND_CLEAN, Expr(1), res);
    return res;
  }

  std::set<const Variable *> rmif_;
};

Stmt CCEIslEmitter::RemoveCond(const Stmt &stmt) { return RmCond(rmif_).Mutate(stmt); }

/*
 * Sink realize inside multi-core "For" statements.
 *
 * Example before mutate:
 *
 * // attr [placeholder(input_B_grad_local_UB, 0x1a00220)] realize_scope = "local.UB"
 * realize input_B_grad_local_UB<float16>([0, 5087]) {
 *   // attr [0] pragma_multi_core_depth = 1
 *   for (cc0, 0, 6) {
 *     for (cc1, 0, 640) { ... }
 *   }
 * }
 *
 * After mutate:
 *
 * // attr [0] pragma_multi_core_depth = 1
 * for (cc0, 0, 6) {
 *   // attr [placeholder(input_B_grad_local_UB, 0x1a00220)] realize_scope = "local.UB"
 *   realize input_B_grad_local_UB<float16>([0, 5087]) {
 *     for (cc1, 0, 640) { ... }
 *   }
 * }
 */
class SinkRealizeInsideMulticore : public IRMutator {
 private:
  static Stmt InsertRealize(const Realize *op, const Stmt &body) {
    return Realize::make(op->func, op->value_index, op->type, op->bounds, op->condition, body);
  }

  static Stmt InsertAttrStmt(const AttrStmt *op, const Stmt &body) {
    return AttrStmt::make(op->node, op->attr_key, op->value, body);
  }

  void RealizeTensorHere(const std::string &tensor_name, Stmt &stmt) {
    stmt = InsertRealize(realized_map_[tensor_name], stmt);
    if (realize_attr_map_.count(tensor_name) > 0) {
      stmt = InsertAttrStmt(realize_attr_map_[tensor_name], stmt);
    }
  }

  void RealizeAllOuterTensorsHere(Stmt &stmt) {
    for (const auto &tensor : realized_map_) {
      RealizeTensorHere(tensor.first, stmt);
    }
    is_realized_ = true;
  }

  Stmt Mutate_(const AttrStmt *op, const Stmt &s) override {
    if (auto realize_op = op->body.as<Realize>()) {
      std::string tensor_name = realize_op->func->func_name();
      CHECK_EQ(realize_attr_map_.count(tensor_name), 0);
      realize_attr_map_.emplace(tensor_name, op);

      Stmt stmt = Mutate(op->body);

      realize_attr_map_.erase(tensor_name);
      return stmt;
    } else if (auto for_op = op->body.as<For>()) {
      if (op->attr_key == "pragma_multi_core_depth") {
        Stmt for_body = IRMutator::Mutate(for_op->body);
        Stmt for_stmt =
          For::make(for_op->loop_var, for_op->min, for_op->extent, for_op->for_type, for_op->device_api, for_body);
        return AttrStmt::make(op->node, op->attr_key, op->value, for_stmt);
      }
    }
    return IRMutator::Mutate_(op, s);
  }

  Stmt Mutate_(const Realize *op, const Stmt &s) final {
    std::string tensor_name = op->func->func_name();
    CHECK_EQ(realized_map_.count(tensor_name), 0);
    realized_map_.emplace(tensor_name, op);

    Stmt stmt = Mutate(op->body);

    if (!is_realized_) RealizeTensorHere(tensor_name, stmt);

    realized_map_.erase(tensor_name);
    return stmt;
  }

  Stmt Mutate_(const For *op, const Stmt &s) final {
    Stmt original = For::make(op->loop_var, op->min, op->extent, op->for_type, op->device_api, op->body);
    RealizeAllOuterTensorsHere(original);
    return original;
  }

  Stmt Mutate_(const Block *op, const Stmt &s) final {
    Stmt original = Block::make(op->first, op->rest);
    RealizeAllOuterTensorsHere(original);
    return original;
  }

  bool is_realized_{false};
  std::unordered_map<std::string, const Realize *> realized_map_;
  std::unordered_map<std::string, const AttrStmt *> realize_attr_map_;
};

std::unordered_set<FunctionRef, NodeHash, NodeEqual> GatherTensors(const NodeRef &stmt) {
  std::unordered_set<FunctionRef, NodeHash, NodeEqual> tensors;
  PostOrderVisit(stmt, [&](const NodeRef &node) -> void {
    if (auto call = node.as<Call>()) {
      if (call->call_type == Call::CallType::Halide) {
        tensors.insert(call->func);
      }
    }
  });
  return tensors;
}

/*
 * Check the expr is constant, or has the form K * var + C, where K and C are constants
 */
bool IsLinearExprOfOneVar(const Expr &arg) {
  std::unordered_set<Var, NodeHash, NodeEqual> vars;
  GatherVars(arg, &vars);
  if (vars.empty()) {
    return isImm(arg);
  } else if (vars.size() >= 2) {
    return false;
  } else {
    Array<Var> array_vars;
    for (const auto &var : vars) array_vars.push_back(var);
2294
    auto coefs = air::arith::DetectLinearEquation(arg, array_vars);
C
ckey_Dou 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
    bool is_linear_equation = (coefs.size() == 2);
    return is_linear_equation;
  }
}

unsigned GetBoundedInnerLoops(const std::vector<const For *> &loops,
                              const std::unordered_set<const Variable *> &free_loop_vars) {
  for (unsigned num_loops = 0; num_loops < loops.size(); ++num_loops) {
    auto curr_loop = loops[loops.size() - num_loops - 1];
    if (free_loop_vars.count(curr_loop->loop_var.get())) return num_loops;
  }
  return loops.size();
}

/*
 * Returns the number of innermost loops that do not access overlapping tensor indexes (args).
 */
unsigned GetInnerLoopsWithoutSelfDependence(const Array<Expr> &args, const std::vector<const For *> &loops) {
  std::unordered_set<const Variable *> free_loop_vars;
  for (const auto loop : loops) {
    free_loop_vars.insert(loop->loop_var.get());
  }
  for (const auto &arg : args) {
    if (!IsLinearExprOfOneVar(arg)) return 0;
    std::unordered_set<Var, ObjectHash, ObjectEqual> vars_in_arg;
    GatherVars(arg, &vars_in_arg);
    CHECK_LE(vars_in_arg.size(), 1);
    if (!vars_in_arg.empty()) {
      free_loop_vars.erase(vars_in_arg.begin()->get());
    }
  }
  return GetBoundedInnerLoops(loops, free_loop_vars);
}

/*
 * Specialized loop distribution for the following code:
 * (It is generated by cce_isl_emitter, so reschedule cannot distribute the loops.)
 *
 *   for (i, 0, 20)
 *     for (j, 0, 10)
 *       if (cond) {
 *         compute_local_UB(0, j) = ...
 *         compute(10 * i + j) = compute_local_UB(0, j)
 *       }
 *
 * --->
 *
 *   for (i, 0, 20) {
 *     for (j, 0, 10)
 *       if (cond)
 *         compute_local_UB(0, j) = ...
 *     for (j, 0, 10)
 *       if (cond)
 *         compute(10 * i + j) = compute_local_UB(0, j)
 *   }
 *
 * Match the following code structure:
 * nested For -> If -> a Block of two Provides S_1, S_2
 * (AttrStmt and other types of stmts are not allowed.)
 *
 * S_1: write a tensor with loop vars or constants as indexes
 * S_2: read the tensor in S_1 with the same indexes as S_1
 *
 * Additional check:
 * Both S_1 and S_2 lhs tensor does not appear in the value of S_1 or the if condition.
 */
class SpecialLoopDistribution : public IRMutator {
 private:
  static bool AllCallsHaveSameIndexes(const NodeRef &stmt, const NodeRef &call_func, const Array<Expr> &args) {
    bool has_mismatch = false;
    PostOrderVisit(stmt, [&](const NodeRef &node) -> void {
      auto call = node.as<Call>();
      if (call && call->call_type == Call::CallType::Halide && call->func == call_func) {
        if (args.size() != call->args.size()) {
          has_mismatch = true;
          return;
        }
        for (unsigned i = 0; i < args.size(); ++i) {
          if (!Equal(call->args[i], args[i])) {
            has_mismatch = true;
            return;
          }
        }
      }
    });
    return !has_mismatch;
  }

  unsigned DetermineNumLoopsToDistribute(const Stmt &stmt) {
    auto op = stmt.as<IfThenElse>();
    CHECK(op != nullptr);
    unsigned ret = 0;
    if (op->else_case.defined()) return ret;

    if (!op->then_case.defined()) return ret;
    auto block = op->then_case.as<Block>();
    if (block == nullptr) return ret;

    auto first = block->first.as<Provide>();
    if (first == nullptr) return ret;

    auto second = block->rest.as<Provide>();
    if (second == nullptr) return ret;
    auto tensors_in_cond = GatherTensors(op->condition);
    auto tensors_in_first = GatherTensors(first->value);
    auto tensors_in_second = GatherTensors(second->value);

    bool lhs_tensor_not_equal = first->func != second->func;
    bool s1_lhs_tensor_accessed_in_s2_rhs = tensors_in_second.count(first->func);
    bool rw_tensor_have_same_indexes = AllCallsHaveSameIndexes(second->value, first->func, first->args);
    bool lhs_tensor_not_in_s1_value = !tensors_in_first.count(first->func) && !tensors_in_first.count(second->func);
    bool lhs_tensor_not_in_if_cond = !tensors_in_cond.count(first->func) && !tensors_in_cond.count(second->func);
    if (lhs_tensor_not_equal && s1_lhs_tensor_accessed_in_s2_rhs && rw_tensor_have_same_indexes &&
        lhs_tensor_not_in_s1_value && lhs_tensor_not_in_if_cond) {
      ret = GetInnerLoopsWithoutSelfDependence(first->args, to_distribued_loops_);
    }
    return ret;
  }

  Stmt IfStmtLoopDistribution(const Stmt &stmt) {
    unsigned num_inner_loops = DetermineNumLoopsToDistribute(stmt);
    if (num_inner_loops == 0) {
      auto outer_loops = to_distribued_loops_;
      to_distribued_loops_.clear();
      Stmt new_body = Mutate(stmt);
      to_distribued_loops_ = outer_loops;  // WrapOuterLoops use "loops" var
      return WrapOuterLoops(num_inner_loops, new_body);
    } else {
      auto op = stmt.as<IfThenElse>();
      CHECK(op != nullptr);
      auto block = op->then_case.as<Block>();
      CHECK(block != nullptr);
      Stmt outer_block = DistributeLoops(num_inner_loops, op->condition, block->first, block->rest);
      return WrapOuterLoops(num_inner_loops, outer_block);
    }
  }

  Stmt DistributeLoops(unsigned num_loops_to_distribute, const Expr &condition, const Stmt &first, const Stmt &second) {
    Stmt first_block = IfThenElse::make(condition, first, Stmt());
    for (unsigned i = 0; i < num_loops_to_distribute; ++i) {
      auto curr_for = to_distribued_loops_[to_distribued_loops_.size() - i - 1];
      first_block = MakeForStmt(curr_for, first_block);
    }
    Stmt second_block = IfThenElse::make(condition, second, Stmt());
    for (unsigned i = 0; i < num_loops_to_distribute; ++i) {
      auto curr_for = to_distribued_loops_[to_distribued_loops_.size() - i - 1];
      second_block = MakeForStmt(curr_for, second_block);
    }
    return Block::make(first_block, second_block);
  }

  Stmt WrapOuterLoops(unsigned num_loops_to_distribute, const Stmt &body) {
    Stmt outer_block = body;
    for (unsigned i = num_loops_to_distribute; i < to_distribued_loops_.size(); ++i) {
      auto curr_for = to_distribued_loops_[to_distribued_loops_.size() - i - 1];
      outer_block = MakeForStmt(curr_for, outer_block);
    }
    return outer_block;
  }

  static Stmt MakeForStmt(const For *curr_for, const Stmt &body) {
    return For::make(curr_for->loop_var, curr_for->min, curr_for->extent, curr_for->for_type, curr_for->device_api,
                     body);
  }

  /*
   * Distribute as many innermost loops as possible.
   * Return statement is wrapped by all loops in "loops".
   */
  Stmt Mutate_(const For *op, const Stmt &s) override {
    auto backup_loops = to_distribued_loops_;
    to_distribued_loops_.push_back(op);
    Stmt stmt;
    if (op->body.as<IfThenElse>()) {
      stmt = IfStmtLoopDistribution(op->body);
    } else if (op->body.as<For>()) {
      stmt = IRMutator::Mutate(op->body);
    } else {
      to_distribued_loops_.clear();
      stmt = IRMutator::Mutate_(op, s);
      to_distribued_loops_ = backup_loops;
      stmt = WrapOuterLoops(0, stmt);
    }
    to_distribued_loops_ = backup_loops;
    return stmt;
  }

  std::vector<const For *> to_distribued_loops_;
};

Stmt CCEIslEmitter::Emit(const isl::ast_node &node) {
  Stmt stmt = EmitAst(node);
  stmt = RemoveCond(stmt);
  /// emit global realize
2489
  if (!info_.cube_info_.IsSpecGemm()) {
C
ckey_Dou 已提交
2490
    for (const auto &i : global_realize_out_) {
2491
      Tensor t = info_.FindTensor(i);
C
ckey_Dou 已提交
2492 2493 2494 2495 2496
      if (realized_.count(t)) continue;
      stmt = InsertRealize(stmt, i, false);
    }

    for (const auto &i : realize_out_) {
2497
      Tensor t = info_.FindTensor(i);
C
ckey_Dou 已提交
2498 2499 2500 2501
      if (realized_.count(t)) continue;
      stmt = InsertRealize(stmt, i, false);
    }

2502 2503 2504
    auto realize_from_input = info_.user_config_.GetRealizeFromInput();
    for (const auto &i : realize_from_input) {
      if (FindUsingTensor(stmt).found(i.get_name()) && !info_.IsInBinds(i.get_name())) {
C
ckey_Dou 已提交
2505 2506 2507 2508 2509 2510
        stmt = InsertRealize(stmt, i, false);
      }
    }

    auto not_realized_tensors = FindNotRealizedTensors().Find(stmt);
    for (const auto &not_realized_tensor : not_realized_tensors) {
2511
      isl::id var = isl::id(info_.GetCtx(), not_realized_tensor);
C
ckey_Dou 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
      if (!FindRealizeScopeToString(var).empty()) {
        // The tensor needs to be realized somewhere, but it is not realized in the correct scope.
        // So, we realize it in the outermost scope to fix it.
        stmt = InsertRealize(stmt, var, false);
      } else {
        // The tensor is a global var, no need to realize.
      }
    }

    stmt = SinkRealizeInsideMulticore().Mutate(stmt);
    stmt = SpecialLoopDistribution().Mutate(stmt);
  }

  std::unordered_map<const Variable *, VarExpr> vmap;
  for (const auto &i : iters_new_name_) {
    vmap.emplace(i.first, VarExpr(i.second));
  }
  return stmt;
}
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

void GetNameWithoutLocal(isl::id &tensor_id, ScopInfo &info) {
  if (!info.cube_info_.IsSpecGemm()) {
    size_t pos = tensor_id.get_name().find("_local_");
    std::string substr = tensor_id.get_name().substr(0, pos);
    if (pos != 0) tensor_id = isl::id(tensor_id.ctx(), substr);
  }
}

isl::multi_aff CCEIslEmitter::TensorAccessMultAff(isl::id &tensor_id, const Array<Expr> &tensor_index,
                                                  const isl::id &node_id) {
  GetNameWithoutLocal(tensor_id, info_);
  return IslEmitter::TensorAccessMultAff(tensor_id, tensor_index, node_id);
}

bool CCEIslEmitter::IsCopyinFromAnotherBand(isl::multi_aff &access) {
  if (!info_.cube_info_.IsSpecGemm()) {
    return IslEmitter::IsCopyinFromAnotherBand(access);
  }
  return false;
}

bool CCEIslEmitter::IsTransferStmt() {
  if (!info_.cube_info_.IsSpecGemm()) {
    return IslEmitter::IsTransferStmt();
  }
  return false;
}

Stmt CCEIslEmitter::EmitAccessNodeCall(const Node *node, const VarMap &var_map_tmp,
                                       BufferedFootPrintInfo &buffer_footprint_info) {
  const Call *call = static_cast<const Call *>(node);
  Array<Expr> args;
  for (auto iv : call->args) {
    args.push_back(ReplaceLoopVar(var_map_tmp).Mutate(iv));
  }
  // Not hoisted, emitting just the mapped subscript.
  if (!buffer_footprint_info.cluster_id) {
    std::string call_name = call->name;
    if (IsTransferStmt() && (std::string::npos == call_name.find("_local_UB"))) {
      call_name = call_name + "_local_UB";
      Tensor t = info_.FindTensor(call_name);
      if (t.defined()) {
        return Evaluate::make(Call::make(call->type, call_name, args, call->call_type, t->op, call->value_index));
      } else {
        LOG(WARNING) << "Call can not found tensor!!!  tensor name: " << call_name;
      }
    }
    return Evaluate::make(Call::make(call->type, call->name, args, call->call_type, call->func, call->value_index));
  }
  return Stmt();
}

C
ckey_Dou 已提交
2584 2585 2586
}  // namespace poly
}  // namespace ir
}  // namespace akg