composite_topi.cc 29.8 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * Copyright 2020 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "topi/elemwise.h"
#include "topi/reduction.h"
#include "topi/broadcast.h"
#include "pass/utils.h"
#include "composite/util.h"

namespace akg {
#define TOPI_TWO_INPUTS_CALL(ins, rv, fn)                                             \
  do {                                                                                \
    auto inputs = ins[0].operator Array<NodeRef>();                                   \
    CHECK_EQ(inputs.size(), 2);                                                       \
    if (inputs[0]->IsInstance<TensorNode>() && inputs[1]->IsInstance<TensorNode>()) { \
      *rv = fn(Downcast<Tensor>(inputs[0]), Downcast<Tensor>(inputs[1]));             \
    } else if (inputs[0]->IsInstance<TensorNode>()) {                                 \
      *rv = fn(Downcast<Tensor>(inputs[0]), Downcast<Expr>(inputs[1]));               \
    } else if (inputs[1]->IsInstance<TensorNode>()) {                                 \
      *rv = fn(Downcast<Expr>(inputs[0]), Downcast<Tensor>(inputs[1]));               \
    } else {                                                                          \
      *rv = fn(Downcast<Expr>(inputs[0]), Downcast<Expr>(inputs[1]));                 \
    }                                                                                 \
  } while (0);

#define TOPI_ONE_INPUT_CALL(ins, rv, fn)            \
  do {                                              \
    auto inputs = ins[0].operator Array<NodeRef>(); \
    CHECK_EQ(inputs.size(), 1);                     \
    CHECK(inputs[0]->IsInstance<TensorNode>());     \
    *rv = fn(Downcast<Tensor>(inputs[0]));          \
  } while (0);

#define TOPI_ONE_INPUT_ONE_ATTR_CALL(ins, rv, fn, get_attr)    \
  do {                                                         \
    auto inputs = ins[0].operator Array<NodeRef>();            \
    CHECK_EQ(inputs.size(), 1);                                \
    CHECK(inputs[0]->IsInstance<TensorNode>());                \
    auto attrs = ins[1].operator Array<NodeRef>();             \
    CHECK_GE(attrs.size(), 1);                                 \
    *rv = fn(Downcast<Tensor>(inputs[0]), get_attr(attrs[0])); \
  } while (0);

Array<Integer> ArrayOrInt(const NodeRef &arg) {
  if (arg->IsInstance<IntImm>() || arg->IsInstance<UIntImm>()) {
    Array<Integer> result;
    result.push_back(Downcast<Integer>(arg));
    return result;
  } else {
    return Downcast<Array<Integer>>(arg);
  }
}

std::string GetString(const NodeRef &arg) {
  auto val = arg.as<StringImm>();
  CHECK(val) << "Input arg is not a string";
  return val->value;
}

void CommonCompare(TVMArgs args, TVMRetValue *rv, const std::string &cmp) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_GE(inputs.size(), 2);

  std::string name = "T_" + cmp + "_";
  Expr true_expr = make_const(Float(32), 1);
  Expr false_expr = make_const(Float(32), 0);
  ktvm::FCompute fcompute;

  if (inputs[0]->IsInstance<TensorNode>()) {
    auto tensor0 = Downcast<Tensor>(inputs[0]);
    true_expr = make_const(tensor0->dtype, 1);
    false_expr = make_const(tensor0->dtype, 0);
    if (inputs[1]->IsInstance<TensorNode>()) {
      auto tensor1 = Downcast<Tensor>(inputs[1]);
      (void)name.append(tensor0->op->name).append("_").append(tensor1->op->name);
      if (cmp == "GreaterEqual") {
        fcompute = [&](const Array<Var> &indices) {
          return Select::make(tensor0(indices) >= tensor1(indices), true_expr, false_expr);
        };
      } else if (cmp == "LessEqual") {
        fcompute = [&](const Array<Var> &indices) {
          return Select::make(tensor0(indices) <= tensor1(indices), true_expr, false_expr);
        };
      }
      *rv = compute(tensor0->shape, fcompute, name);
    } else {
      CHECK(inputs[1]->IsInstance<ExprNode>());
      auto expr1 = Downcast<Expr>(inputs[1]);
      (void)name.append(tensor0->op->name);
      if (cmp == "GreaterEqual") {
        fcompute = [&](const Array<Var> &indices) {
          return Select::make(tensor0(indices) >= expr1, true_expr, false_expr);
        };
      } else if (cmp == "LessEqual") {
        fcompute = [&](const Array<Var> &indices) {
          return Select::make(tensor0(indices) <= expr1, true_expr, false_expr);
        };
      }
      *rv = compute(tensor0->shape, fcompute, name);
    }
  } else if (inputs[1]->IsInstance<TensorNode>()) {
    auto tensor1 = Downcast<Tensor>(inputs[1]);
    true_expr = make_const(tensor1->dtype, 1);
    false_expr = make_const(tensor1->dtype, 0);
    CHECK(inputs[0]->IsInstance<ExprNode>());
    auto expr0 = Downcast<Expr>(inputs[0]);
    (void)name.append(tensor1->op->name);
    if (cmp == "GreaterEqual") {
      fcompute = [&](const Array<Var> &indices) {
        return Select::make(expr0 >= tensor1(indices), true_expr, false_expr);
      };
    } else if (cmp == "LessEqual") {
      fcompute = [&](const Array<Var> &indices) {
        return Select::make(expr0 <= tensor1(indices), true_expr, false_expr);
      };
    }
    *rv = compute(tensor1->shape, fcompute, name);
  } else {
    CHECK(inputs[0]->IsInstance<ExprNode>());
    CHECK(inputs[1]->IsInstance<ExprNode>());
    // scaler >= scaler
    auto expr0 = Downcast<Expr>(inputs[0]);
    auto expr1 = Downcast<Expr>(inputs[1]);
    (void)name.append("scalar");
    if (cmp == "GreaterEqual") {
      fcompute = [&](const Array<Var> &indices) { return Select::make(expr0 >= expr1, true_expr, false_expr); };
    } else if (cmp == "LessEqual") {
      fcompute = [&](const Array<Var> &indices) { return Select::make(expr0 <= expr1, true_expr, false_expr); };
    }
    *rv = compute({Expr(1)}, fcompute, name);
  }
}

void CommonSelect(NodeRef a, NodeRef b, NodeRef c, NodeRef d, TVMRetValue *rv, bool ge) {
  bool a_is_expr = a->IsInstance<ExprNode>();
  bool a_is_tensor = a->IsInstance<TensorNode>();
  bool b_is_expr = b->IsInstance<ExprNode>();
  bool b_is_tensor = b->IsInstance<TensorNode>();
  bool c_is_tensor = c->IsInstance<TensorNode>();
  bool c_is_expr = c->IsInstance<ExprNode>();
  bool d_is_defined = d.defined();
  bool d_is_tensor = (d_is_defined && d->IsInstance<TensorNode>());
  bool d_is_expr = (d_is_defined && d->IsInstance<ExprNode>());
  CHECK(a_is_expr || a_is_tensor) << "Input1 should be of type Expr or Tensor";
  CHECK(b_is_expr || b_is_tensor) << "Input2 should be of type Expr or Tensor";
  CHECK(c_is_expr || c_is_tensor) << "Input3 should be of type Expr or Tensor";
  CHECK(d_is_expr || d_is_tensor) << "Input4 should be of type Expr or Tensor";
  CHECK((!d_is_defined && c_is_tensor) || !(c_is_expr && d_is_expr)) << "Input3 or input4 should be of type Tensor";

  Tensor a_tensor;
  Tensor b_tensor;
  Tensor c_tensor;
  Tensor d_tensor;
  auto shape = Downcast<Tensor>(c_is_tensor ? c : d)->shape;
  auto dtype = Downcast<Tensor>(c_is_tensor ? c : d)->dtype;
  c_tensor =
    c_is_tensor ? Downcast<Tensor>(c) : compute(shape, [&](const Array<Var> &indices) { return Downcast<Expr>(c); });
  if (d_is_tensor) {
    d_tensor = Downcast<Tensor>(d);
  } else if (d_is_defined) {
    d_tensor = compute(shape, [&](const Array<Var> &indices) { return Downcast<Expr>(d); });
  }

  if (a_is_expr) {
    a_tensor = compute(shape, [&](const Array<Var> &indices) { return Downcast<Expr>(a); });
  } else {
    a_tensor = topi::broadcast_to(Downcast<Tensor>(a), shape);
  }

  if (b_is_expr) {
    b_tensor = compute(shape, [&](const Array<Var> &indices) { return Downcast<Expr>(b); });
  } else {
    b_tensor = topi::broadcast_to(Downcast<Tensor>(b), shape);
  }

  if (dtype == Float(16)) {
    a_tensor = topi::cast(a_tensor, Float(32));
    b_tensor = topi::cast(b_tensor, Float(32));
    c_tensor = topi::cast(c_tensor, Float(32));
    if (d_tensor.defined()) {
      d_tensor = topi::cast(d_tensor, Float(32));
    }
  }

  Tensor cmp_value;
  auto sub_ab = ge ? topi::subtract(a_tensor, b_tensor) : topi::subtract(b_tensor, a_tensor);
  if (dtype == Int(32)) {
    auto add_min = topi::add(sub_ab, make_const(dtype, 1));
    auto vmax_zero = topi::maximum(add_min, make_const(dtype, 0));
    cmp_value = topi::minimum(vmax_zero, make_const(dtype, 1));
  } else {
    CHECK_EQ(dtype, Float(32));
    auto min_value = make_const(dtype, pow(2, -126));
    auto max_value = make_const(dtype, pow(2, 62));
    auto mid_value = make_const(dtype, pow(2, 2));
    auto data_zero =
      ge ? topi::multiply(a_tensor, make_const(dtype, 0)) : topi::multiply(b_tensor, make_const(dtype, 0));
    auto add_min = topi::add(sub_ab, min_value);
    auto vmax_zero = topi::maximum(add_min, data_zero);
    auto vmin_min = topi::minimum(vmax_zero, min_value);
    auto vmul_max = topi::multiply(vmin_min, max_value);
    vmul_max = topi::multiply(vmul_max, max_value);
    cmp_value = topi::multiply(vmul_max, mid_value);
  }

  Tensor res;
  if (d_tensor.defined()) {
    auto cmp_value_invert = topi::subtract(make_const(cmp_value->dtype, 1), cmp_value);
    auto res1 = topi::multiply(c_tensor, cmp_value);
    auto res2 = topi::multiply(d_tensor, cmp_value_invert);
    res = topi::add(res1, res2);
  } else {
    res = topi::multiply(c_tensor, cmp_value);
  }

  if (dtype == Float(16)) {
    res = topi::cast(res, Float(16));
  }

  *rv = res;
}

void CommonMaximumGrad(TVMArgs args, TVMRetValue *rv, bool ge) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_GE(inputs.size(), 3);
  CHECK(inputs[2]->IsInstance<TensorNode>());
  CommonSelect(inputs[0], inputs[1], inputs[2], make_const(Int(32), 0), rv, ge);
}

TVM_REGISTER_GLOBAL("Abs").set_body([](TVMArgs args, TVMRetValue *rv) { TOPI_ONE_INPUT_CALL(args, rv, topi::abs); });

TVM_REGISTER_GLOBAL("Round").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto call = [](const ktvm::Tensor &tensor) {
    std::string name = "T_round_" + tensor->op->name;
    return compute(
      tensor->shape, [&](const Array<Var> &i) { return ktvm::cast(ktvm::Int(32), ktvm::round(tensor(i))); }, name,
      topi::kElementWise);
  };
  TOPI_ONE_INPUT_CALL(args, rv, call);
});

TVM_REGISTER_GLOBAL("Neg").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto call = [](const Tensor &tensor) {
    std::string name = "T_negative_" + tensor->op->name;
    return topi::negative(tensor, name);
  };
  TOPI_ONE_INPUT_CALL(args, rv, call);
});

TVM_REGISTER_GLOBAL("Exp").set_body([](TVMArgs args, TVMRetValue *rv) { TOPI_ONE_INPUT_CALL(args, rv, topi::exp); });

TVM_REGISTER_GLOBAL("TensorAdd").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::add);
});

TVM_REGISTER_GLOBAL("RealDiv").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::divide);
});

TVM_REGISTER_GLOBAL("Mul").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::multiply);
});

TVM_REGISTER_GLOBAL("Minimum").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::minimum);
});

TVM_REGISTER_GLOBAL("Maximum").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::maximum);
});

TVM_REGISTER_GLOBAL("Log").set_body([](TVMArgs args, TVMRetValue *rv) { TOPI_ONE_INPUT_CALL(args, rv, topi::log); });

TVM_REGISTER_GLOBAL("ReduceSum").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 2);
  auto attrs = args[1].operator ktvm::Array<ktvm::NodeRef>();
  CHECK_GE(attrs.size(), 2);
  ktvm::Array<ktvm::Integer> axis = ArrayOrInt(attrs[0]);
  auto keepdims = static_cast<bool>(ir::GetInt32Const(Downcast<Expr>(attrs[1])));

  if (attrs.size() == 3) {
    Map<std::string, NodeRef> com_attrs;
    com_attrs.Set("atomic_add", attrs[2]);
    auto name = GetString(attrs[2]);
    auto call = [&axis, &keepdims, &name, &com_attrs](const ktvm::Tensor &tensor) {
      auto ndim = tensor->shape.size();
      CHECK_NE(ndim, 0) << "Cannot reduce a 0 dim Tensor";
      auto reduce_axes = topi::GetRealAxis(static_cast<int>(ndim), axis);
      auto squeeze_axes = keepdims ? std::vector<int>() : reduce_axes;
      auto target_shape = topi::MakeReduceTargetShape(reduce_axes, tensor, keepdims, true);
      auto r_axes = topi::MakeReduceAxes(reduce_axes, tensor);

      auto reduce_compute = [&](const Array<Var> &indices) {
        Array<Expr> eval_range;
        Array<Var> eval_indices;
        int arg_counter = 0;
        int red_counter = 0;

        for (size_t i = 0; i < tensor->shape.size(); ++i) {
          bool squeeze_i = std::find(squeeze_axes.begin(), squeeze_axes.end(), i) != squeeze_axes.end();
          if (std::find(reduce_axes.begin(), reduce_axes.end(), i) != reduce_axes.end()) {
            // real_axis contains i
            eval_range.push_back(r_axes[red_counter]);
            eval_indices.push_back(r_axes[red_counter]->var);
            red_counter++;
            squeeze_i ? arg_counter : ++arg_counter;
            continue;
          }
          eval_range.push_back(indices[arg_counter]);
          arg_counter++;
        }
        return ktvm::sum(tensor(eval_range), r_axes);
      };

      return compute(target_shape, reduce_compute, name, topi::kCommReduce, com_attrs);
    };
    TOPI_ONE_INPUT_CALL(args, rv, call);
  } else {
    auto call = [&axis, &keepdims](const ktvm::Tensor &tensor) { return topi::sum(tensor, axis, keepdims); };
    TOPI_ONE_INPUT_CALL(args, rv, call);
  }
});

TVM_REGISTER_GLOBAL("Pow").set_body([](TVMArgs args, TVMRetValue *rv) { TOPI_TWO_INPUTS_CALL(args, rv, topi::power); });

TVM_REGISTER_GLOBAL("Sub").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_TWO_INPUTS_CALL(args, rv, topi::subtract);
});

TVM_REGISTER_GLOBAL("Rsqrt").set_body([](TVMArgs args, TVMRetValue *rv) {
  TOPI_ONE_INPUT_CALL(args, rv, topi::rsqrt);
});

TVM_REGISTER_GLOBAL("Sqrt").set_body([](TVMArgs args, TVMRetValue *rv) { TOPI_ONE_INPUT_CALL(args, rv, topi::sqrt); });

TVM_REGISTER_GLOBAL("ExpandDims").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto ref = [](NodeRef attr) -> int {
    auto axis = ir::GetInt32Const(Downcast<Expr>(attr));
    return axis;
  };

  TOPI_ONE_INPUT_ONE_ATTR_CALL(args, rv, topi::expand_dims, ref);
});

TVM_REGISTER_GLOBAL("Reshape").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto ref = [](NodeRef attr) -> Array<Expr> {
    auto shape = Downcast<Array<Integer>>(attr);
    CHECK(!shape.empty());
    Array<Expr> newshape;
    for (auto s : shape) {
      newshape.push_back(s);
    }
    return newshape;
  };

  TOPI_ONE_INPUT_ONE_ATTR_CALL(args, rv, topi::reshape, ref);
});

TVM_REGISTER_GLOBAL("Cast").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto type_mapping_copy = type_mapping;
  auto ref = [&type_mapping_copy](NodeRef attr) -> Type {
    CHECK(attr->IsInstance<StringImm>());
    std::string dtype_str = attr.as<StringImm>()->value;
    if (type_mapping_copy.find(dtype_str) == type_mapping_copy.end()) {
      LOG(FATAL) << "Not support dtype: " << dtype_str;
    }
    return type_mapping_copy[dtype_str];
  };

  auto call = [](const Tensor &tensor, Type type) {
    std::string name = "T_cast_" + tensor->op->name;
    if (tensor->dtype == ktvm::Bool() && type == ktvm::Float(32)) {
      return topi::cast(topi::cast(tensor, ktvm::Float(16), name), type, name);
    } else if (tensor->dtype == ktvm::Float(32) && type == ktvm::Bool()) {
      const char *runtime_mode = std::getenv("RUNTIME_MODE");
      if (runtime_mode == nullptr || (runtime_mode != nullptr && std::strstr(runtime_mode, "cloud") == nullptr)) {
        auto tmp = topi::cast(tensor, ktvm::Float(16), name + "tmp");
        auto zero = make_zero(ktvm::Float(16));
        auto res = topi::not_equal(tmp, zero);
        return topi::cast(res, type, name);
      } else {
        auto zero = make_zero(tensor->dtype);
        return topi::not_equal(tensor, zero);
      }
    }

    return topi::cast(tensor, type, name);
  };
  TOPI_ONE_INPUT_ONE_ATTR_CALL(args, rv, call, ref);
});

TVM_REGISTER_GLOBAL("Tile").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto ref = [](NodeRef attr) -> Array<Integer> {
    auto multiples = Downcast<Array<Integer>>(attr);
    CHECK(!multiples.empty());
    return multiples;
  };

  auto call = [](const Tensor &tensor, const Array<Integer> &multiples) {
    std::string name = "T_tile_" + tensor->op->name;
    return topi::tile(tensor, multiples, name);
  };
  TOPI_ONE_INPUT_ONE_ATTR_CALL(args, rv, call, ref);
});

TVM_REGISTER_GLOBAL("AddN").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto arr_t = args[0].operator Array<Tensor>();
  CHECK(!arr_t.empty());
  *rv = topi::elemwise_sum(arr_t);
});

TVM_REGISTER_GLOBAL("ReduceMax").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 2);
  auto attrs = args[1].operator Array<NodeRef>();
  CHECK_GE(attrs.size(), 2);
  auto axis = ArrayOrInt(attrs[0]);
  CHECK(attrs[1]->IsInstance<ExprNode>());
  auto keepdims = static_cast<bool>(ir::GetInt32Const(Downcast<Expr>(attrs[1])));

  auto call = [&axis, &keepdims](const Tensor &tensor) { return topi::max(tensor, axis, keepdims); };
  TOPI_ONE_INPUT_CALL(args, rv, call);
});

TVM_REGISTER_GLOBAL("ReduceMin").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 2);
  auto attrs = args[1].operator Array<NodeRef>();
  CHECK_GE(attrs.size(), 2);
  auto axis = ArrayOrInt(attrs[0]);
  CHECK(attrs[1]->IsInstance<ExprNode>());
  auto keepdims = static_cast<bool>(ir::GetInt32Const(Downcast<Expr>(attrs[1])));

  auto call = [&axis, &keepdims](const Tensor &tensor) { return topi::min(tensor, axis, keepdims); };
  TOPI_ONE_INPUT_CALL(args, rv, call);
});

TVM_REGISTER_GLOBAL("OneHot").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 2);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_GE(inputs.size(), 3);
  CHECK(inputs[0]->IsInstance<TensorNode>());
  CHECK(inputs[1]->IsInstance<ExprNode>());
  CHECK(inputs[2]->IsInstance<ExprNode>());
  auto indices = Downcast<Tensor>(inputs[0]);
  auto on_value = Downcast<Expr>(inputs[1]);
  auto off_value = Downcast<Expr>(inputs[2]);

  auto attrs = args[1].operator Array<NodeRef>();
  CHECK_GE(attrs.size(), 2);
  CHECK(attrs[0]->IsInstance<ExprNode>());
  CHECK(attrs[1]->IsInstance<ExprNode>());
  auto depth = ir::GetInt32Const(Downcast<Expr>(attrs[0]));
  auto axis = ir::GetInt32Const(Downcast<Expr>(attrs[1]));

  *rv = topi::one_hot(indices, on_value, off_value, depth, axis, indices->dtype);
});

TVM_REGISTER_GLOBAL("Equal").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  CHECK(inputs[1]->IsInstance<TensorNode>());
  auto data1 = Downcast<Tensor>(inputs[0]);
  auto data2 = Downcast<Tensor>(inputs[1]);

  CHECK_EQ(data1->shape.size(), data2->shape.size())
    << "x and y must have the same shape. Got different number of dimension: " << data1->shape.size() << " vs "
    << data2->shape.size();
  CHECK_EQ(data1->dtype, data2->dtype) << "x and y must have the same dtype: " << data1->dtype << " vs "
                                       << data2->dtype;
  Expr true_expr = make_const(data1->dtype, true);
  Expr false_expr = make_const(data1->dtype, false);

  std::string name = "T_equal_";
  (void)name.append(data1->op->name).append("_").append(data2->op->name);
  *rv = compute(
    data1->shape,
    [&](const Array<Var> &indices) { return Select::make(data1(indices) == data2(indices), true_expr, false_expr); },
    name, topi::kBroadcast);
});

TVM_REGISTER_GLOBAL("Reciprocal").set_body([](TVMArgs args, TVMRetValue *rv) {
  auto call = [](const Tensor &tensor) { return topi::divide(make_const(tensor->dtype, 1.0), tensor); };
  TOPI_ONE_INPUT_CALL(args, rv, call);
});

TVM_REGISTER_GLOBAL("GreaterEqual").set_body([](TVMArgs args, TVMRetValue *rv) {
  CommonCompare(args, rv, "GreaterEqual");
});

TVM_REGISTER_GLOBAL("LessEqual").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  CHECK(inputs[1]->IsInstance<TensorNode>());
  auto data1 = Downcast<Tensor>(inputs[0]);
  auto data2 = Downcast<Tensor>(inputs[1]);

  CHECK_EQ(data1->shape.size(), data2->shape.size())
    << "x and y must have the same shape. Got different number of dimension: " << data1->shape.size() << " vs "
    << data2->shape.size();
  CHECK_EQ(data1->dtype, data2->dtype) << "x and y must have the same dtype: " << data1->dtype << " vs "
                                       << data2->dtype;
  Expr true_expr = make_const(data1->dtype, 1);
  Expr false_expr = make_const(data1->dtype, 0);

  std::string name = "T_less_equal_";
  (void)name.append(data1->op->name).append("_").append(data2->op->name);
  *rv = compute(
    data1->shape,
    [&](const Array<Var> &indices) { return Select::make(data1(indices) <= data2(indices), true_expr, false_expr); },
    name, topi::kBroadcast);
});

TVM_REGISTER_GLOBAL("ZerosLike").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  auto data = Downcast<Tensor>(inputs[0]);
  std::string name = "T_zero_like_";
  // In some case, zeros like can use scalar 0 directly
  *rv = compute(
    data->shape, [&](const Array<Var> &indices) { return make_const(data->dtype, 0); }, name, topi::kBroadcast);
});

TVM_REGISTER_GLOBAL("Select").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  CHECK(inputs[1]->IsInstance<TensorNode>());
  CHECK(inputs[2]->IsInstance<TensorNode>());
  auto condition = Downcast<Tensor>(inputs[0]);
  auto x = Downcast<Tensor>(inputs[1]);
  auto y = Downcast<Tensor>(inputs[2]);
  *rv = topi::where(condition, x, y);
});

TVM_REGISTER_GLOBAL("SelectGE").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_EQ(inputs.size(), 4);

  if ((inputs[1]->IsInstance<ExprNode>() && akg::ir::IsZero(Downcast<Expr>(inputs[1]))) &&
      (inputs[3]->IsInstance<ExprNode>() && akg::ir::IsZero(Downcast<Expr>(inputs[3]))) &&
      inputs[0]->IsInstance<TensorNode>() && inputs[2]->IsInstance<TensorNode>()) {
    // Rewrite relu grad
    ktvm::FCompute fcompute;
    Tensor x_tensor = Downcast<Tensor>(inputs[0]);
    Tensor dout_tensor = Downcast<Tensor>(inputs[2]);

    Expr help_min = 1;
    Expr help_rec_one = 1;
    Expr help_rec_sec = 1;
    if (x_tensor->dtype == Float(32)) {
      help_min = make_const(x_tensor->dtype, pow(2, -126));
      help_rec_one = make_const(x_tensor->dtype, pow(2, 38));
      help_rec_sec = make_const(x_tensor->dtype, pow(2, 44));
    } else if (x_tensor->dtype == Float(16)) {
      help_min = make_const(x_tensor->dtype, pow(2, -24));
      help_rec_one = make_const(x_tensor->dtype, pow(2, 12));
      help_rec_sec = make_const(x_tensor->dtype, pow(2, 12));
    }

    auto res = topi::minimum(x_tensor, help_min);
    res = topi::maximum(res, make_zero(x_tensor->dtype));
    res = topi::multiply(res, help_rec_one);
    if (x_tensor->dtype == Float(32)) {
      res = topi::multiply(res, help_rec_sec);
    }
    res = topi::multiply(res, help_rec_sec);
    if (res->dtype != dout_tensor->dtype) {
      res = topi::cast(res, dout_tensor->dtype, "T_cast_GE");
    }
    *rv = topi::multiply(dout_tensor, res);
  } else if (inputs[3]->IsInstance<ExprNode>() && akg::ir::IsZero(Downcast<Expr>(inputs[3]))) {
    CommonMaximumGrad(args, rv, true);
  } else {
    LOG(FATAL) << "Common select ge has not been implemented yet.";
  }
});

TVM_REGISTER_GLOBAL("SelectLE").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_EQ(inputs.size(), 4);
  if (inputs[3]->IsInstance<ExprNode>() && akg::ir::IsZero(Downcast<Expr>(inputs[3]))) {
    CommonMaximumGrad(args, rv, false);
  } else {
    LOG(FATAL) << "Common select le has not been implemented yet.";
  }
});

TVM_REGISTER_GLOBAL("SelectGT").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_EQ(inputs.size(), 4);
  CommonSelect(inputs[0], inputs[1], inputs[3], inputs[2], rv, false);
});

TVM_REGISTER_GLOBAL("SelectLT").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_EQ(inputs.size(), 4);
  CommonSelect(inputs[0], inputs[1], inputs[3], inputs[2], rv, true);
});

TVM_REGISTER_GLOBAL("InplaceAssign").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK_GE(inputs.size(), 2);
  bool in2_is_expr = inputs[1]->IsInstance<ExprNode>();
  bool in2_is_tensor = inputs[1]->IsInstance<TensorNode>();
  CHECK(inputs[0]->IsInstance<TensorNode>()) << "Input1 should be of type Tensor";
  CHECK(in2_is_expr || in2_is_tensor) << "Input2 should be of type Expr or Tensor";
  auto ref = Downcast<Tensor>(inputs[0]);
  auto val = in2_is_expr ? compute(ref->shape, [&](const Array<Var> &indices) { return Downcast<Expr>(inputs[1]); })
                         : Downcast<Tensor>(inputs[1]);
  auto buf = decl_buffer(val->shape, val->dtype, ref->op->name);
  *rv = Map<Tensor, Buffer>({{ref, buf}, {val, buf}});
});

TVM_REGISTER_GLOBAL("EquivFormat").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  auto ref = Downcast<Tensor>(inputs[0]);
  *rv = ref;
});

TVM_REGISTER_GLOBAL("AddMinValue").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 1);
  auto inputs = args[0].operator Array<NodeRef>();
  CHECK(inputs[0]->IsInstance<TensorNode>());
  auto tensor = Downcast<Tensor>(inputs[0]);
  Expr min_value = 0;
  if (tensor->dtype == Float(32)) {
    min_value = make_const(Float(32), pow(2, -126));
    *rv = topi::add(tensor, min_value);
  } else if (tensor->dtype == Float(16)) {
    min_value = make_const(Float(16), pow(2, -24));
    *rv = topi::add(tensor, min_value);
  } else {
    *rv = tensor;
  }
});

TVM_REGISTER_GLOBAL("TransData").set_body([](TVMArgs args, TVMRetValue *rv) {
  CHECK_GE(args.size(), 2);
  auto inputs = args[0].operator Array<NodeRef>();
  auto attrs = args[1].operator Array<NodeRef>();
  CHECK_GE(inputs.size(), 1);
  CHECK(inputs[0]->IsInstance<TensorNode>());
  auto input_data = Downcast<Tensor>(inputs[0]);
  CHECK_GE(attrs.size(), 2);
  auto src_format = GetString(attrs[0]);
  auto dst_format = GetString(attrs[1]);
  auto input_shape = input_data->shape;
  auto cube_size = 16;
  // FRACTAL_NZ: zN fractal format
  if (src_format == "DefaultFormat" && dst_format == "FRACTAL_NZ") {
    if (input_data->dtype != Float(16) && input_data->dtype != Float(32)) {
      LOG(FATAL) << "dtype of input should be float16 or float32";
    }
    if (input_data->dtype == Float(32)) {
      input_data = topi::cast(input_data, Float(16));
    }
    CHECK_GE(input_shape.size(), 2);
    auto batch_dim = input_shape.size() - 2;
    auto m = input_shape[batch_dim];
    auto n = input_shape[batch_dim + 1];
    Array<Expr> output_shape;
    for (size_t i = 0; i < batch_dim; ++i) {
      output_shape.push_back(input_shape[i]);
    }
    auto m1 = truncdiv(m + cube_size - 1, cube_size);
    auto n1 = truncdiv(n + cube_size - 1, cube_size);
    output_shape.push_back(n1);
    output_shape.push_back(m1);
    output_shape.push_back(cube_size);
    output_shape.push_back(cube_size);
    auto fcompute = [&input_data, &m, &n, &batch_dim, &cube_size](const Array<Var> &indices) {
      Array<Expr> input_indice;
      for (size_t i = 0; i < batch_dim; ++i) {
        input_indice.push_back(indices[i]);
      }
      auto n1_indice = indices[batch_dim];
      auto m1_indice = indices[batch_dim + 1];
      auto m0_indice = indices[batch_dim + 2];
      auto n0_indice = indices[batch_dim + 3];
      auto m_indice = m1_indice * cube_size + m0_indice;
      auto n_indice = n1_indice * cube_size + n0_indice;
      input_indice.push_back(m_indice);
      input_indice.push_back(n_indice);
      auto res = if_then_else(m_indice >= m || n_indice >= n, make_zero(input_data->dtype), input_data(input_indice));
      return res;
    };
    auto name = "T_transdata_" + input_data->op->name;
    *rv = compute(output_shape, fcompute, name);
  } else if (src_format == "FRACTAL_NZ" && dst_format == "DefaultFormat") {
    if (input_data->dtype != Float(16) && input_data->dtype != Float(32)) {
      LOG(FATAL) << "dtype of input should be float16 or float32";
    }
    CHECK_GE(input_shape.size(), 4);
    auto batch_dim = input_shape.size() - 4;
    CHECK_GE(attrs.size(), 3);
    auto original_shape = Downcast<Array<Expr>>(attrs[2]);
    CHECK_EQ(original_shape.size(), batch_dim + 2);
    auto output_shape = original_shape;
    auto name = "T_transdata_" + input_data->op->name;
    auto fcompute = [&input_data, &batch_dim, &cube_size](const Array<Var> &indices) {
      Array<Expr> input_indice;
      for (size_t i = 0; i < batch_dim; ++i) {
        input_indice.push_back(indices[i]);
      }
      auto m_indice = indices[batch_dim];
      auto n_indice = indices[batch_dim + 1];
      auto m1_indice = truncdiv(m_indice, cube_size);
      auto m0_indice = truncmod(m_indice, cube_size);
      auto n1_indice = truncdiv(n_indice, cube_size);
      auto n0_indice = truncmod(n_indice, cube_size);
      input_indice.push_back(n1_indice);
      input_indice.push_back(m1_indice);
      input_indice.push_back(m0_indice);
      input_indice.push_back(n0_indice);
      return input_data(input_indice);
    };
    *rv = compute(output_shape, fcompute, name);
  } else {
    LOG(FATAL) << "TransData for src_format " << src_format << "and dst_format" << dst_format << " is not supported";
  }
});
}  // namespace akg