conv_run_mansch.py 4.9 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np

from akg.utils import kernel_exec as utils
from test_op import conv_mansch
from test_run.conv_utils import conv_forward_naive
from test_run.conv_utils import random_gaussian
from akg.utils.result_analysis import result_compare


def conv_run_mansch(FMap_shape, Filter_shape, Pad, Stride, Dilation=None, use_bias=False, bypass_L1=False,
                    dump_data=False, Tile=None, attrs=None):
    conv_dtype = 'float16'
    fp32_mad = True
    if attrs is not None and 'fp32mmad' in attrs:
        fp32_mad = attrs['fp32mmad']

    mod = conv_mansch.test_CCE_Conv(FMap_shape, Filter_shape, Pad, Stride,
                      Tile[0], Tile[1], Tile[2], Tile[3], Tile[4],
                      use_bias=use_bias, fp32_mad=fp32_mad, kernel_name="conv_mansch")

    source_code = mod.imported_modules[0].get_source()
37
    utils.create_code("conv_mansch", ".", source_code)
C
ckey_Dou 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    A, B, bias_data, expect = gen_data(FMap_shape, Filter_shape, Pad, Stride, Dilation, use_bias)

    expect = expect.reshape((expect.shape[0], expect.shape[1], expect.shape[2]*expect.shape[3],expect.shape[4]))  # output on conv2d is in 4d format
    out_data = 60000.0*np.ones(expect.shape).astype(conv_dtype)
    if use_bias:
        out_data = utils.mod_launch(mod, [A.astype(conv_dtype), B.astype(conv_dtype), bias_data.astype(conv_dtype),
                                          out_data.astype(conv_dtype)], expect=expect)
    else:
        out_data = utils.mod_launch(mod, [A.astype(conv_dtype), B.astype(conv_dtype), out_data.astype(conv_dtype)],
                                    expect=expect)
    np.set_printoptions(threshold=sys.maxsize)
    assert_res = True
    try:
        assert_res = result_compare(out_data, expect, r_tol=5e-3)

        np.testing.assert_allclose(out_data, expect, rtol=5e-02, atol=1e-2, equal_nan=True, verbose=True)
        print("conv_test_Succeed")
    except BaseException as e:
        data_len = expect.size
        np.savetxt("actual.txt", out_data.reshape(data_len))
        np.savetxt("expect.txt", expect.reshape(data_len))
        print(str(e))

    return (A, B), out_data, expect, assert_res

def gen_data(fm_shape, w_shape, pad, stride, dilation, bias):

    if isinstance(stride,int):
        stride = [stride]*2
    elif isinstance(stride,(list,tuple)) and 1== len(stride):
        stride = list(stride)*2
    elif isinstance(stride,(list,tuple)) and 2== len(stride):
        pass
    else:
        raise RuntimeError('stride para illegal !!!')

    if isinstance(pad,int):
        pad = [pad]*4
    elif isinstance(pad,(list,tuple)) and 1==len(pad):
        pad = list(pad) *4
    elif isinstance(pad,(list,tuple)) and 4==len(pad):
        pass
    else:
        raise RuntimeError('pad para illegal !!!')

    if isinstance(dilation,int):
        dilation = [dilation]*2
    elif isinstance(dilation,(list,tuple)) and 1 == len(dilation):
        dilation = list(dilation)*2
    elif isinstance(dilation,(list,tuple)) and 2 == len(dilation):
        pass
    else:
        raise RuntimeError('dilation para illegal !!!')


    S_h,S_w = stride
    P_top,P_bottom,P_left,P_right = pad
    D_h,D_w = dilation


    IN, IC, IH, IW = fm_shape
    C0 = 16
    IC = ((IC+C0-1)//C0)*C0

    WN, WC, WH, WW = w_shape
    WN = ((WN+C0-1)//C0)*C0
    WC = ((WC+C0-1)//C0)*C0


    ON = IN
    OC = WN
    WHD = (WH - 1) * D_h + 1
    WWD = (WW - 1) * D_w + 1
    OH = (IH + P_top+P_bottom - WHD)//S_h + 1
    OW = (IW + P_left+P_right - WWD)//S_w + 1

    x = random_gaussian((IN, IC, IH, IW), miu=1, sigma=0.1).astype(np.float16)
    w = random_gaussian((WN, WC, WH, WW), miu=0.5, sigma=0.01).astype(np.float16)

    if bias:
        b = np.random.rand(WN).astype(np.float16, copy=False)
    else:
        b = (np.array(np.zeros(WN))).astype(np.float16, copy=False)

    conv_param = {'stride': stride, 'pad': pad, 'dilation': dilation}
    out = conv_forward_naive(x, w, b, conv_param)

    ''' transpose to 5D - NC1HWC0 '''
    feature = x.reshape(IN, IC//C0, C0, IH, IW).transpose(0, 1, 3, 4, 2).copy()
    ''' transpose to 5D - C1HWNC0 '''
    filter = w.reshape(WN, WC//C0, C0, WH, WW).transpose(1, 3, 4, 0, 2).copy()
    filter = filter.reshape(WC//C0*WH*WW, WN//16, 16,C0)

    bb = b.reshape(1,WN//16,1,1,16)
    ''' transpose to 5D - NC1HWC0 '''
    output = out.reshape(ON, OC//C0, C0, OH, OW).transpose(0, 1, 3, 4, 2).copy()

    return feature, filter, bb, output