build_module.cc 42.0 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/**
 * Copyright 2019 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <tvm/ir_visitor.h>
#include <tvm/node/serialization.h>

#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "build_module.h"
#include "pass/expr_alg_simplify.h"
#include "ir_pass.h"
#include "schedule_pass.h"
#include "codegen/pass_mgr.h"
#include "composite/util.h"

namespace akg {
AttrMap global_attrs;
Array<NodeRef> g_external_call_name;

Tensor CreatePlaceholder(const NodeRef &arg) {
39
  auto n = air::make_node<PlaceholderOpNode>();
C
ckey_Dou 已提交
40 41 42 43 44 45 46 47 48

  if (auto var_node = arg.as<Variable>()) {
    n->name = var_node->name_hint;
    n->shape = Array<Expr>{GetRef<Expr>(var_node)};
    n->dtype = var_node->type;
  } else if (auto buffer_node = arg.as<BufferNode>()) {
    n->name = buffer_node->name;
    Expr size = std::accumulate(buffer_node->shape.begin(), buffer_node->shape.end(), Expr(1),
                                [](const Expr &mul, const Expr &e) { return mul * e; });
49
    n->shape = Array<Expr>{air::ir::Simplify(size)};
C
ckey_Dou 已提交
50 51 52 53 54
    n->dtype = buffer_node->dtype;
  } else if (auto tensor_node = arg.as<TensorNode>()) {
    n->name = tensor_node->op->name;
    Expr size = std::accumulate(tensor_node->shape.begin(), tensor_node->shape.end(), Expr(1),
                                [](const Expr &mul, const Expr &e) { return mul * e; });
55
    n->shape = Array<Expr>{air::ir::Simplify(size)};
C
ckey_Dou 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    n->dtype = tensor_node->dtype;
  } else {
    LOG(FATAL) << "arg must be Tensor, Buffer or Var, but got " << arg;
  }

  return Operation(n).output(0);
}

Buffer DeclBuffer(const NodeRef &arg, const int data_alignment, const int offset_factor,
                  const std::string &pre_name = "") {
  // use default value.
  Array<Expr> strides;

  Type dtype;
  Array<Expr> shape;
  std::string name = pre_name;

  if (auto variable_node = arg.as<Variable>()) {
    if (name.empty()) {
      name = variable_node->name_hint;
    }
    shape = Array<Expr>{GetRef<Expr>(variable_node)};
    dtype = variable_node->type;
  } else if (auto buffer_node = arg.as<BufferNode>()) {
    if (name.empty()) {
      name = buffer_node->name;
    }
    shape = buffer_node->shape;
    dtype = buffer_node->dtype;
  } else if (auto tensor_node = arg.as<TensorNode>()) {
    if (name.empty()) {
      name = tensor_node->op->name;
    }
    shape = tensor_node->shape;
    dtype = tensor_node->dtype;
  } else {
    LOG(FATAL) << "args must be Tensor, Buffer or Var, but got " << arg;
  }

  auto data = Variable::make(Handle(), name);
  Expr elem_offset;
  if (offset_factor != 0) {
    elem_offset = Variable::make(shape[0].type(), name + "_elem_offset");
  }

  return BufferNode::make(data, dtype, shape, strides, elem_offset, name, "", data_alignment, offset_factor,
                          BufferType::kDefault);
}

void GetBinds(const Array<NodeRef> &args, const Map<Tensor, Buffer> &binds, const BuildConfig &config,
              Array<NodeRef> *out_args, Map<Tensor, Buffer> *out_binds) {
  for (const auto &b : binds) {
    out_binds->Set(b.first, b.second);
  }

  for (const auto &x : args) {
    if (x->IsInstance<TensorNode>()) {
      auto tensor_node = GetRef<Tensor>(x.as<TensorNode>());
      if (out_binds->find(tensor_node) == out_binds->end()) {
        auto buf = DeclBuffer(tensor_node, config->data_alignment, config->offset_factor);
        out_binds->Set(tensor_node, buf);
        out_args->push_back(buf);
      } else {
        out_args->push_back((*out_binds)[tensor_node]);
      }
    } else if (x->IsInstance<BufferNode>()) {
      out_args->push_back(x);
    } else if (x->IsInstance<Variable>()) {
      out_args->push_back(x);
    } else {
      LOG(FATAL) << "args must be Tensor, Buffer or Var, but got " << x;
    }
  }

  return;
}

void GetFlattenedBinds(const Array<NodeRef> &args, const Map<Tensor, Buffer> &binds, const BuildConfig &config,
                       Array<NodeRef> &out_args, Map<Tensor, Buffer> &out_binds, bool is_dynamic) {
  std::unordered_map<Tensor, bool> flag_binds;
  // the map aims to remove duplicate names between binds and args
  // because in-place ops (e.g. assign_add) use the same buffer as input and args, and duplicates need to be removed
  std::unordered_map<std::string, Buffer> bind_name_to_buffer_map;
  for (const auto &b : binds) {
    static_cast<void>(bind_name_to_buffer_map.emplace(b.first->op->func_name(), b.second));
  }
  for (const auto &x : args) {
    if (x->IsInstance<TensorNode>()) {
      auto tensor_node = GetRef<Tensor>(x.as<TensorNode>());
      auto tensor_name = tensor_node->op->func_name();
      CHECK_NE(bind_name_to_buffer_map.count(tensor_name), 0) << "undefined tensor " << x;
      auto bind_buffer = bind_name_to_buffer_map[tensor_name];
      flag_binds[tensor_node] = true;
      Tensor nx = CreatePlaceholder(tensor_node);
      bool find_buf = false;
      for (auto iter : out_binds) {
        Buffer buffer = iter.second;
        if (bind_buffer->name == buffer->name) {
          out_binds.Set(nx, buffer);
          find_buf = true;
          break;
        }
      }

      if (!find_buf) {
        Buffer buf = DeclBuffer(nx, config->data_alignment, config->offset_factor, bind_buffer->name);
        out_binds.Set(nx, buf);
        out_args.push_back(buf);
      } else {
        out_args.push_back(bind_buffer);
      }
    } else if (x->IsInstance<BufferNode>()) {
      out_args.push_back(x);
    } else if (x->IsInstance<Variable>()) {
      out_args.push_back(x);
    } else {
      LOG(FATAL) << "args must be Tensor, Buffer or Var";
    }
  }

  for (const auto &x : binds) {
    Tensor x_tensor = x.first;
    if (flag_binds.insert(std::pair<Tensor, bool>{x_tensor, true}).second) {
      Tensor nx = CreatePlaceholder(x_tensor);
      bool find_buf = false;
      for (auto iter : out_binds) {
        Buffer buffer = iter.second;
        if (binds[x_tensor]->name == buffer->name) {
          out_binds.Set(nx, buffer);
          find_buf = true;
        }
      }

      if (!find_buf) {
        Buffer buf = DeclBuffer(nx, config->data_alignment, config->offset_factor, binds[x_tensor]->name);
        out_binds.Set(nx, buf);
      }
    }
  }

  // Just for reshape in dynamic mode
  if (is_dynamic) {
    Tensor in_tensor, out_tensor;
    bool is_reshape = false;
    if (out_binds.size() == 2 && args.size() == 2) {
      for (auto tb : out_binds) {
        if (tb.first->op->name == "reshape" || tb.first->op->name == "reshape_cast") {
          out_tensor = tb.first;
          is_reshape = true;
        } else {
          in_tensor = tb.first;
        }
      }
    }

    if (is_reshape) {
      Map<Tensor, Buffer> new_binds;
      Array<NodeRef> new_args;
214
      auto n = air::make_node<PlaceholderOpNode>();
C
ckey_Dou 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      n->name = out_tensor->op->name;
      n->shape = in_tensor->shape;
      n->dtype = out_tensor->dtype;
      Tensor ten = Operation(n).output(0);
      Buffer buf = DeclBuffer(ten, config->data_alignment, config->offset_factor, n->name);

      new_binds.Set(in_tensor, out_binds[in_tensor]);
      new_binds.Set(ten, buf);
      new_args.push_back(out_binds[in_tensor]);
      new_args.push_back(buf);
      out_binds = new_binds;
      out_args = new_args;
    }
  }
}

void RenameBinds(Map<Tensor, Buffer> &binds, const BuildConfig &config, Array<NodeRef> &tensor_args_list,
                 Array<NodeRef> &buffer_args_list, Map<Tensor, Tensor> &tensor_replace) {
  std::unordered_map<std::string, int> tensor_name_count;
  std::set<std::string> tensor_name;
  Map<Tensor, Buffer> out_binds;
  Map<Buffer, Buffer> buffer_replace;
  bool rename_flag = false;

  // count the number of times for binds name, if op->name's count greater than 1, need rename op->name
  for (const auto &x : binds) {
    ++tensor_name_count[x.first->op->name];
  }

  // if binds' name conflict, firstly rename tensor_name, then construct new mappings, finally set to out_binds
  for (const auto &x : binds) {
    const auto &old_tensor = x.first;
    const auto &old_buffer = x.second;
    if (tensor_name_count[old_tensor->op->name] > 1) {
      int idx = 0;
      std::string new_name = old_tensor->op->name;
      std::string extend;
      do {
        extend = "_rename_" + std::to_string(++idx);
      } while (tensor_name.count(new_name + extend) != 0);
      new_name.append(extend);
      tensor_name.insert(new_name);
257
      auto cop = old_tensor->op.as<air::ComputeOpNode>();
C
ckey_Dou 已提交
258
      CHECK(cop != nullptr);
259
      Tensor new_tensor = air::ComputeOpNode::make(new_name, cop->tag, cop->attrs, cop->axis, cop->body).output(0);
C
ckey_Dou 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
      tensor_replace.Set(old_tensor, new_tensor);
      if (buffer_replace.count(old_buffer) == 0) {
        auto new_buffer = DeclBuffer(new_tensor, config->data_alignment, config->offset_factor, new_name);
        buffer_replace.Set(old_buffer, new_buffer);
        out_binds.Set(new_tensor, new_buffer);
      }
      rename_flag = true;
    }
  }
  // if there is no conflict in binds name, just do out_binds = binds
  // else need use new_buffer to replace old_buffer to insert out_binds
  auto UpdateOutBinds = [&](Map<Tensor, Buffer> &out_binds) -> Map<Tensor, Buffer> & {
    for (const auto &it : binds) {
      const auto &tensor_node = it.first;
      const auto &buffer_node = it.second;
      if (tensor_name_count[tensor_node->op->name] == 1) {
        if (buffer_replace.count(buffer_node) > 0) {
          out_binds.Set(tensor_node, buffer_replace[buffer_node]);
        } else {
          out_binds.Set(tensor_node, buffer_node);
        }
      }
    }
    return out_binds;
  };

  // traverse the list of tensor_args, according to tensor_node to update tensor_args_list
  auto UpdateArgsByTensor = [&tensor_args_list, &tensor_replace]() {
    Array<NodeRef> new_tensor_args_list;
    for (const auto &x : tensor_args_list) {
      if (x->IsInstance<TensorNode>()) {
        Tensor tensor_node = GetRef<Tensor>(x.as<TensorNode>());
        if (tensor_replace.count(tensor_node) != 0) {
          new_tensor_args_list.push_back(tensor_replace[tensor_node]);
        } else {
          new_tensor_args_list.push_back(tensor_node);
        }
      } else {
        new_tensor_args_list.push_back(x);
      }
    }
    return new_tensor_args_list;
  };

  // traverse the list of buffer_args, according to buffer_node to update buffer_args_list
  auto UpdateArgsByBuffer = [&buffer_args_list, &buffer_replace]() {
    Array<NodeRef> new_buffer_args_list;
    for (const auto &x : buffer_args_list) {
      if (x->IsInstance<BufferNode>()) {
        Buffer buffer_node = GetRef<Buffer>(x.as<BufferNode>());
        if (buffer_replace.count(buffer_node) != 0) {
          new_buffer_args_list.push_back(buffer_replace[buffer_node]);
        } else {
          new_buffer_args_list.push_back(buffer_node);
        }
      } else {
        new_buffer_args_list.push_back(x);
      }
    }
    return new_buffer_args_list;
  };

  // if rename tensor_name, need to update tensor_args and buffer_args
  if (rename_flag) {
    tensor_args_list = UpdateArgsByTensor();
    buffer_args_list = UpdateArgsByBuffer();
    binds = UpdateOutBinds(out_binds);
  }
  return;
}

void FixParametricBinds(const Map<Tensor, Buffer> &binds, const Array<NodeRef> &in_args, const BuildConfig &config,
                        Map<Tensor, Buffer> *out_binds, Array<NodeRef> *out_args) {
  Expr H = 0;
  Expr W = 0;
  Expr PT = 0;
  Expr PB = 0;
  Expr PL = 0;
  Expr PR = 0;
  Expr KH = 0;
  Expr KW = 0;
  Expr SH = 0;
  Expr SW = 0;
  Expr CI1 = 0;
  std::string feature = "input_1_1";
  std::string kernel = "input_1_2";
  std::string bias = "input_1_3";
  std::string output = "output";
  Buffer feature_buffer;
  Buffer kernel_buffer;
  Buffer bias_buffer;
  Buffer output_buffer;
  for (const auto &x : in_args) {
    if (auto buf = x.as<BufferNode>()) {
      if (buf->name.find(feature) != std::string::npos) {
        feature_buffer = Downcast<Buffer>(x);
      }
      if (buf->name.find(bias) != std::string::npos) {
        bias_buffer = Downcast<Buffer>(x);
      }
      if (buf->name.find(output) != std::string::npos || buf->name.find(kernel) != std::string::npos) {
        continue;
      }
    }
    if (auto v = x.as<Variable>()) {
      if (v->name_hint == "H") {
        H = Downcast<Var>(x);
      } else if (v->name_hint == "W") {
        W = Downcast<Var>(x);
      } else if (v->name_hint == "PT") {
        PT = Downcast<Var>(x);
      } else if (v->name_hint == "PB") {
        PB = Downcast<Var>(x);
      } else if (v->name_hint == "PL") {
        PL = Downcast<Var>(x);
      } else if (v->name_hint == "PR") {
        PR = Downcast<Var>(x);
      } else if (v->name_hint == "KH") {
        KH = Downcast<Var>(x);
      } else if (v->name_hint == "KW") {
        KW = Downcast<Var>(x);
      } else if (v->name_hint == "SH") {
        SH = Downcast<Var>(x);
      } else if (v->name_hint == "SW") {
        SW = Downcast<Var>(x);
      } else if (v->name_hint == "CI1") {
        CI1 = Downcast<Var>(x);
      }
    }
  }
  for (const auto &x : binds) {
    Array<Expr> shape;
    if (x.second->name.find(output) != std::string::npos) {
      CHECK_EQ(x.second->shape.size(), 5);
      shape.push_back(x.second->shape[0]);
      shape.push_back(x.second->shape[1]);
396 397
      auto h = air::floordiv(H + PT + PB - KH, SH) + 1;
      auto w = air::floordiv(W + PL + PR - KW, SW) + 1;
C
ckey_Dou 已提交
398 399 400
      shape.push_back(h);
      shape.push_back(w);
      shape.push_back(x.second->shape[4]);
401
      Tensor tt = air::placeholder(shape, x.second->dtype, x.second->name);
C
ckey_Dou 已提交
402 403 404 405 406 407 408 409 410
      output_buffer = DeclBuffer(tt, config->data_alignment, config->offset_factor, x.second->name);
      out_binds->Set(tt, output_buffer);
    } else if (x.second->name.find(kernel) != std::string::npos) {
      CHECK_EQ(x.second->shape.size(), 4);
      auto n = CI1 * KH * KW;
      shape.push_back(n);
      shape.push_back(x.second->shape[1]);
      shape.push_back(x.second->shape[2]);
      shape.push_back(x.second->shape[3]);
411
      Tensor tt = air::placeholder(shape, x.second->dtype, x.second->name);
C
ckey_Dou 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
      kernel_buffer = DeclBuffer(tt, config->data_alignment, config->offset_factor, x.second->name);
      out_binds->Set(tt, kernel_buffer);
    } else {
      out_binds->Set(x.first, x.second);
    }
  }
  if (feature_buffer.defined()) {
    out_args->push_back(feature_buffer);
  }
  if (kernel_buffer.defined()) {
    out_args->push_back(kernel_buffer);
  }
  if (bias_buffer.defined()) {
    out_args->push_back(bias_buffer);
  }
  if (output_buffer.defined()) {
    out_args->push_back(output_buffer);
  }
  for (const auto &x : in_args) {
    if (x.as<Variable>()) {
      out_args->push_back(x);
    }
  }
}

NodeRef Lower(Schedule sch, const Array<NodeRef> &in_args, const Array<NodeRef> &shape_vars, const std::string &name,
              const Map<Tensor, Buffer> &in_binds, const Map<std::string, NodeRef> &in_attrs, bool simple_mode,
D
dabaiji 已提交
439
              bool polyhedral, bool tuning, const std::string &target, const BuildConfig &config) {
C
ckey_Dou 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  ir::TestExprCompuationSimplify();
  CHECK(sch.defined()) << "sch is not defined.";
  CHECK(!name.empty()) << "name is empty.";
  CHECK(find_if(name.begin(), name.end(), [](char c) { return !std::isalnum(c) && c != '_'; }) == name.end())
    << "kernel name contains invalid chars: " << name;

  Array<NodeRef> args;
  if (in_args.defined()) {
    args = in_args;
  }
  Map<Tensor, Buffer> binds;
  if (in_binds.defined()) {
    binds = in_binds;
  }
  if (in_attrs.defined()) {
    global_attrs = in_attrs;
  }
  PassMgr::ClearPassId();
  PassTimer *pass_timer = PassTimer::GetInstance();
  global_attrs.Set(kKernelName, StringImm::make(name));

461
  global_attrs.Set(kDumpPassIr, air::make_const(Int(32), config->dump_pass_ir));
C
ckey_Dou 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  if (config->dump_pass_ir) {
    std::string dump_ir_dir;
    if (global_attrs.GetStringAttr(kDumpIrDir, &dump_ir_dir)) {
      PassMgr::SetDir(dump_ir_dir);
    } else {
      PassMgr::SetDir(name);
    }
    CreateDir(PassMgr::GetDir());
    std::string dump_poly_dir;
    if (!global_attrs.GetStringAttr(kDumpPolyDir, &dump_poly_dir)) {
      dump_poly_dir = PassMgr::GetDir() + "/poly";
      global_attrs.Set(kDumpPolyDir, StringImm::make(dump_poly_dir));
    }
    CreateDir(dump_poly_dir);
  }

  Array<NodeRef> arg_list_0;
  Map<Tensor, Buffer> binds_0;
  GetBinds(args, binds, config, &arg_list_0, &binds_0);

  // Phase 0
  if (polyhedral && global_attrs.GetBoolAttr(kEnableAutoInline, true)) {
    akg::schedule::AutoInline(sch);
  }
  auto new_sch = sch.normalize();
487
  auto bounds = air::schedule::InferBound(new_sch);
C
ckey_Dou 已提交
488
  Stmt stmt = make_pass("schedule.ScheduleOps", new_sch, bounds, false);
D
dabaiji 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

  if (target == "cuda") {
    // Phase 1
    stmt = NEXT_PASS(RewriteForTensorCore, stmt, new_sch, binds_0);
    stmt = NEXT_PASS(StorageFlatten, stmt, binds_0, 64, config->instrument_bound_checkers);
    stmt = NEXT_PASS(CanonicalSimplify, stmt);

    // Phase 2
    if (!simple_mode) {
      stmt = NEXT_PASS(LoopPartition, stmt, config->partition_const_loop);
    }
    if (config->disable_vectorize) {
      stmt = NEXT_PASS(SkipVectorize, stmt);
    } else {
      stmt = NEXT_PASS(VectorizeLoop, stmt);
    }
    stmt = NEXT_PASS(InjectVirtualThread, stmt);
    stmt = NEXT_PASS(InjectDoubleBuffer, stmt, config->double_buffer_split_loop);
    stmt = NEXT_PASS(StorageRewrite, stmt);
    stmt = NEXT_PASS(UnrollLoop, stmt, config->auto_unroll_max_step, config->auto_unroll_max_depth,
                     config->auto_unroll_max_extent, config->unroll_explicit);

    // Phase 3
    stmt = NEXT_PASS(Simplify, stmt);
    stmt = NEXT_PASS(RemoveNoOp, stmt);
    if (config->instrument_bound_checkers) {
      stmt = NEXT_PASS(InstrumentBoundCheckers, stmt);
    }
    if (simple_mode) {
      return stmt;
    }
    LoweredFunc lowered_func = NEXT_PASS(MakeAPI, stmt, name, arg_list_0, 0, config->restricted_func);
    return lowered_func;
  }

C
ckey_Dou 已提交
524 525 526 527 528 529 530 531 532 533 534 535
  if (!polyhedral) {
    // for conv-matmul manual schedule
    stmt = NEXT_PASS(AutoMadPragmaAttr, stmt, true);
  }

  stmt = NEXT_PASS(RewriteMultiValueFunc, stmt);
  Map<Tensor, Tensor> replace;
  RenameBinds(binds_0, config, args, arg_list_0, replace);
  PassMgr::SetArgs(arg_list_0);
  stmt = NEXT_PASS(RenameRealize, stmt, binds_0, replace);

  bool is_dynamic = !shape_vars.empty();
536
  global_attrs.Set(kIsDynamic, air::make_const(Int(32), is_dynamic));
C
ckey_Dou 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

  Array<NodeRef> arg_list_1;
  Map<Tensor, Buffer> binds_1;
  GetFlattenedBinds(args, binds_0, config, arg_list_1, binds_1, is_dynamic);
  Stmt stmt1 = NEXT_PASS(ElementwiseFlatten, stmt, binds_0, binds_1);
  if (stmt1.get() != stmt.get()) {
    stmt = stmt1;
    arg_list_0 = arg_list_1;
    binds_0 = binds_1;
  }

  for (auto &node : shape_vars) {
    if (node.as<Variable>()) {
      arg_list_0.push_back(node);
    }
  }

  PassMgr::SetArgs(arg_list_0);

D
dabaiji 已提交
556
  if (target != "aicpu") {
C
ckey_Dou 已提交
557 558 559 560 561 562 563 564
    stmt = NEXT_PASS(MathIntrinRewrite, stmt);
  }

  if (global_attrs.GetBoolAttr(kEnableRewriteScalarCompute, false)) {
    stmt = NEXT_PASS(ScalarComputeRewrite, stmt);
  }

  // Phase 1
D
dabaiji 已提交
565
  if (target != "aicpu" && polyhedral) {
C
ckey_Dou 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    stmt = NEXT_PASS(UnifyLoopVars, stmt, binds_0, arg_list_0);
    stmt = NEXT_PASS(CheckShapeParams, stmt, binds_0);
    stmt = NEXT_PASS(AlignPartitionCCE, stmt);

    // Loop Partition args : 2 : split_const_loop, 3 : remove Div / Mod ops by partitioning,
    //                       4 : whether to partition convolution or not
    if (global_attrs.GetBoolAttr(kEnablePrePolyLoopPartition, true)) {
      stmt = NEXT_PASS(LoopPartitionCCE, stmt, true, false, !polyhedral);
    }
    if (global_attrs.GetBoolAttr(kLoopPartitionUnroll, false)) {
      stmt = NEXT_PASS(UnrollNonConstantExtent, stmt);
    }
    if (global_attrs.GetBoolAttr(kExtentToCond, true)) {
      stmt = NEXT_PASS(ConvertExtentToCond, stmt, binds_0);
    }
    if (global_attrs.GetBoolAttr(kEnableToThreeAddress, true)) {
      if (global_attrs.count(kToThreeAddressCrossSimply) != 0) {
        // Not combine with reuse tensors
        stmt = NEXT_PASS(ToThreeAddress, stmt, false, 0, true);
      } else {
        if (global_attrs.GetBoolAttr(kToThreeAddressReuse, false)) {
          int min_split = global_attrs.GetIntAttr(kToThreeAddressMinSplit, 10);
          if (min_split > 0) {
            stmt = NEXT_PASS(ToThreeAddress, stmt, true, min_split);
          } else {
            stmt = NEXT_PASS(ToThreeAddress, stmt, true);
          }
        } else {
          stmt = NEXT_PASS(ToThreeAddress, stmt);
        }
      }
    }
    if (!global_attrs.GetBoolAttr(kDisableCse, false)) {
      stmt = NEXT_PASS(StmtCSE, stmt, binds_0);
    }
    if (!global_attrs.GetBoolAttr(kDisableVn, false)) {
      stmt = NEXT_PASS(ValueNumbering, stmt);
    }
    if (!global_attrs.GetBoolAttr(kDisableHalfToFloatSumOpt, false)) {
      stmt = NEXT_PASS(HalfReduceSumRewrite, stmt, binds_0);
    }
    stmt = NEXT_PASS(StmtPatternRewrite, stmt);
    stmt = NEXT_PASS(CopyPropagation, stmt, binds_0);
    stmt = NEXT_PASS(MathIntrinRewrite, stmt);
    if (global_attrs.GetBoolAttr(kRewriteVarTensorIdx, false)) {
      stmt = NEXT_PASS(RewriteVarTensorIdx, stmt, binds_0);
    } else {
      stmt = NEXT_PASS(RewriteTensorIndex, stmt);
    }
    if (global_attrs.GetBoolAttr(kEnableFeatureLibrary, false) ||
        global_attrs.GetBoolAttr(kEnableFeatureLibraryPrePoly, false)) {
      stmt = NEXT_PASS(FeatureLibTransform, stmt);
    }
    stmt = NEXT_PASS(UnrollLoop, stmt, -1, -1, 1, true);
    stmt = NEXT_PASS(SinkIfStmt, stmt);
    int level = global_attrs.GetIntAttr(kHelpTiling, -1);
    if (tuning || level > help_tiling_level["None"]) {
      if (tuning) {
        level = help_tiling_level["Tuning"];
      }

      Map<std::string, NodeRef> attrs_1 = global_attrs;
628
      attrs_1.Set(kDumpTuningLevel, air::make_const(Int(32), level));
C
ckey_Dou 已提交
629 630 631
      NodeRef tuning_spaces = NEXT_PASS(GenTuningSpace, stmt, binds_0, attrs_1, false);
      return tuning_spaces;
    }
632
  }
C
ckey_Dou 已提交
633

634
  // micro-tuning configs: current strategy is to retry autopoly up to 3 times when storage flatten/rewrite fails
D
dabaiji 已提交
635 636
  bool need_micro_tuning =
    target != "aicpu" && polyhedral && !is_dynamic && global_attrs.GetStringAttr("dim", "").empty();
637 638 639 640
  const int max_enter_poly_times = global_attrs.GetIntAttr(kMaxNumRetryPoly, need_micro_tuning ? 4 : 1);
  int enter_count = 0;
  Stmt stmt_before_poly = stmt;
  while (enter_count < max_enter_poly_times) {
D
dabaiji 已提交
641
    if (target != "aicpu" && polyhedral) {
642 643 644
      Array<NodeRef> poly_res = NEXT_PASS(AutoPoly, stmt_before_poly, binds_0, global_attrs, false, is_dynamic);
      enter_count++;
      CHECK_EQ(poly_res.size(), 2);
645 646
      stmt = air::Downcast<Stmt>(poly_res[0]);
      Array<air::Var> tiling_params = air::Downcast<Array<air::Var>>(poly_res[1]);
647 648 649
      for (const auto &var : tiling_params) {
        arg_list_0.push_back(var);
      }
C
ckey_Dou 已提交
650

651 652 653 654 655 656 657
      if (global_attrs.GetBoolAttr(kTileSizeIsVar, false)) {
        Array<NodeRef> arg_list_2;
        Map<Tensor, Buffer> binds_2;
        FixParametricBinds(binds_0, arg_list_0, config, &binds_2, &arg_list_2);
        stmt = NEXT_PASS(FixBindBuffer, stmt, binds_2);
        arg_list_0 = arg_list_2;
        binds_0 = binds_2;
C
ckey_Dou 已提交
658 659
      }

660 661 662 663 664 665 666 667 668 669 670 671
      if (is_dynamic) {
        if (global_attrs.GetBoolAttr(kEnableSubstituteDivVar, false)) {
          stmt = NEXT_PASS(SubstituteDivVar, stmt);
        }

        // fix var addresses because poly identify vars by name
        stmt = NEXT_PASS(UnifyLoopVars, stmt, binds_0, arg_list_0);
        // isolate dynamic tile loops (isolate body and tail)
        if (global_attrs.GetBoolAttr(kEnableIsolateLoop, true)) {
          stmt = NEXT_PASS(IsolateLoops, stmt, global_attrs.GetBoolAttr(kEnableIsolateMinMax, false));
          stmt = NEXT_PASS(PromoteLetStmt, stmt, arg_list_0);
        }
C
ckey_Dou 已提交
672 673
      }

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
      // pls do not insert pass between AutoPoly and cube special pass.
      // cube special pass begin
      stmt = NEXT_PASS(ExprPatternRewrite, stmt);
      stmt = NEXT_PASS(AutoMadPragmaAttr, stmt);
      stmt = NEXT_PASS(PostFusion, stmt, binds_0, is_dynamic);
      stmt = NEXT_PASS(ReduceFusionOpt, stmt, binds_0);
      stmt = NEXT_PASS(PostProcessImg2col, stmt);
      stmt = NEXT_PASS(PromoteIfStmt, stmt, is_dynamic);
      stmt = NEXT_PASS(BypassL1, stmt);
      if (global_attrs.GetBoolAttr(kEnableStrideKernelOp, true)) {
        stmt = NEXT_PASS(StrideKernelOp, stmt, binds_0, is_dynamic);
      }
      stmt = NEXT_PASS(Load3dTrans, stmt, is_dynamic);
      // cube special pass end
      stmt = NEXT_PASS(CopyPropagation, stmt, binds_0);
      stmt = NEXT_PASS(ConvertCondToExtent, stmt);
      bool enable_convert_if = global_attrs.GetBoolAttr(kEnableConvertIf, false);
      if (enable_convert_if) {
        stmt = NEXT_PASS(FixRealizeShape, stmt);
      }
      if (global_attrs.GetBoolAttr(kEnableDmaSink, false)) {
        stmt = NEXT_PASS(DMASink, stmt);
      }
C
ckey_Dou 已提交
697

698 699 700
      stmt = NEXT_PASS(LowerWith, stmt);
      stmt = NEXT_PASS(ForEliminate, stmt);
      stmt = NEXT_PASS(RealizeCompress, stmt);
C
ckey_Dou 已提交
701

702 703 704 705 706 707 708 709 710 711 712
      if (!global_attrs.GetBoolAttr(kCoarsenImg2Col, false)) {
        stmt = NEXT_PASS(LoopNormlize, stmt);
      }
      stmt = NEXT_PASS(PoolingTransform, stmt, is_dynamic);
      stmt = NEXT_PASS(InjectAttr, stmt);
      stmt = NEXT_PASS(ModDivEliminate, stmt);
      if (enable_convert_if) {
        stmt = NEXT_PASS(AlignLastAxisLoopExtent, stmt, binds_0);
        stmt = NEXT_PASS(FixLoopExtent, stmt);
        stmt = NEXT_PASS(ConvertIfToSelect, stmt);
      }
C
ckey_Dou 已提交
713
    }
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    try {
      stmt = NEXT_PASS(StorageFlatten, stmt, binds_0, 64);
    } catch (const std::runtime_error &e) {
      if (enter_count >= max_enter_poly_times) {
        CHECK(false) << e.what();
      }
      global_attrs.Set(kErrorInfo, StringImm::make(e.what()));
      continue;
    }
    stmt = NEXT_PASS(DmaFlatten, stmt, global_attrs.GetBoolAttr(kTileSizeIsVar, false));
    if (global_attrs.GetBoolAttr(kAlgebraSimplify, false) && is_dynamic) {
      stmt = NEXT_PASS(AlgebraSimplify, stmt);
    }
    if (is_dynamic) {
      stmt = NEXT_PASS(UnifyAllocate, stmt);
C
ckey_Dou 已提交
729 730
    }

731 732 733
    if (global_attrs.GetBoolAttr(kEleminateOutmostForCond, false)) {
      stmt = NEXT_PASS(PreProcess4Multicore, stmt);
    }
C
ckey_Dou 已提交
734

735 736 737 738 739
    int enable_multicore = global_attrs.GetIntAttr(kEnableMulticore, 1);
    if (!is_dynamic && enable_multicore != 0 && global_attrs.GetBoolAttr(kMultiCoreLoopSwitchHoist, true)) {
      stmt = NEXT_PASS(MultiCoreLoopSwitchHoist, stmt);
    }
    stmt = NEXT_PASS(LoopSwitchHoist, stmt, global_attrs.GetIntAttr(kEnableHoistAllocate, false));
C
ckey_Dou 已提交
740

741 742
    // Loop Partition args : 2 : split_const_loop, 3 : remove Div / Mod ops by partitioning,
    //                       4 : whether to partition convolution or not
D
dabaiji 已提交
743
    if (target != "aicpu" && global_attrs.GetBoolAttr(kEnablePostPolyLoopPartition, true)) {
744 745
      stmt = NEXT_PASS(LoopPartitionCCE, stmt, true, false, !polyhedral);
    }
C
ckey_Dou 已提交
746

747 748 749
    if (polyhedral && global_attrs.GetBoolAttr(kEnableSinkAllocate, true)) {
      stmt = NEXT_PASS(SinkAllocate, stmt);
    }
C
ckey_Dou 已提交
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    if (global_attrs.GetBoolAttr(kLoopPartitionUnroll, false)) {
      // For the Manual scheduling or When polyhedral is not used
      stmt = NEXT_PASS(UnrollNonConstantExtent, stmt);
    }
    if (!polyhedral) {
      // fix mad attributes and remove dead computations for the manual schedule
      stmt = NEXT_PASS(FixMadAttrs, stmt);
    }
    if (!is_dynamic) {
      stmt = NEXT_PASS(CanonicalSimplify, stmt);
    }
    stmt = NEXT_PASS(ForEliminate, stmt);
    if (global_attrs.GetBoolAttr(kAlgebraSimplify, false) && is_dynamic) {
      stmt = NEXT_PASS(AlgebraSimplify, stmt);
    }
    if (!is_dynamic) {
      stmt = NEXT_PASS(FixLoopExtent, stmt);
    }
C
ckey_Dou 已提交
769

D
dabaiji 已提交
770
    if (target != "aicpu") {
771 772 773 774 775 776
      stmt = NEXT_PASS(AutoPragma, stmt);
    }
    stmt = NEXT_PASS(EliminateAtomicDma, stmt);
    if (global_attrs.GetBoolAttr(kDeadCodeElim, false)) {
      stmt = NEXT_PASS(DeadCodeElim, stmt);
    }
C
cy 已提交
777

778 779
    if (is_dynamic) {
      stmt = NEXT_PASS(AnalyzeMinAlignDynamic, stmt, global_attrs.GetIntAttr(kEnableConvAnalyzeAlign, true),
D
dabaiji 已提交
780
                       global_attrs.GetIntAttr(kEnableScalarAlign, false));
C
ckey_Dou 已提交
781
    } else {
C
cy 已提交
782 783 784 785
      stmt = NEXT_PASS(RewriteBroadcastVector, stmt);
      stmt = NEXT_PASS(OptimizePragma, stmt);
      stmt = NEXT_PASS(MergeLoops, stmt, false);
      stmt = NEXT_PASS(PackStore, stmt);
786
      stmt = NEXT_PASS(AnalyzeMinAlignStatic, stmt);
C
cy 已提交
787
      stmt = NEXT_PASS(RecoverStore, stmt);
788
    }
C
cy 已提交
789

790 791 792 793 794 795 796 797
    stmt = NEXT_PASS(MultiLastAxisReductions, stmt, is_dynamic);
    stmt = NEXT_PASS(AutoReorder, stmt);
    if (enable_multicore != 0) {
      if (is_dynamic && enable_multicore == 1) {
        Var block_dim = Variable::make(Int(32), "blockDim");
        Array<NodeRef> multicore_res =
          NEXT_PASS(InjectMultiCoreVar, stmt, block_dim, global_attrs.GetIntAttr(kMergeOuterLoop, 0));
        CHECK_EQ(multicore_res.size(), 2);
798 799
        stmt = air::Downcast<Stmt>(multicore_res[0]);
        auto extent_thread = air::Downcast<Integer>(multicore_res[1]);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        if (extent_thread.as<IntImm>()->value == -1) {
          arg_list_0.push_back(block_dim);
        }
      } else {
        int block_dim = enable_multicore == 1 ? -1 : enable_multicore;
        stmt = NEXT_PASS(InjectMultiCore, stmt, block_dim, global_attrs.GetIntAttr(kMergeOuterLoop, 0), is_dynamic,
                         global_attrs.GetBoolAttr(kMultiCoreScalarRerrange, false));
      }
    }
    if (!is_dynamic) {
      RecordCore(stmt, global_attrs.GetBoolAttr(kRecordCore, false));
    }
    stmt = NEXT_PASS(SelectLower, stmt);
    stmt = NEXT_PASS(ReplaceFargmaxCasts, stmt);
    if (global_attrs.GetBoolAttr(kEnableCoverProtectOptimize, true) && !is_dynamic) {
      stmt = NEXT_PASS(GatherLoopInfo, stmt);
    }
    stmt = NEXT_PASS(CastFilter, stmt);
    if (!is_dynamic) {
      stmt = NEXT_PASS(SplitTail, stmt);
    }
    stmt = NEXT_PASS(EmitInsn, stmt, global_attrs.GetBoolAttr(kEnableBisectOptimize, true),
                     global_attrs.GetBoolAttr(kEnableCoverProtectOptimize, true), binds_0, is_dynamic);
    // must be after EmitInsn
    stmt = NEXT_PASS(TileCoverCorrect, stmt);
    if (global_attrs.GetBoolAttr(kEnableCoverProtectOptimize, true) && !is_dynamic) {
L
lyfne 已提交
826 827 828
      // simulated blocks > 240 000 => simulated case takes too much time (> 10 sec)
      // number of protections > 128 => too many brackets in the if statement throw an error
      stmt = NEXT_PASS(CoverProtection, stmt, 240000, 128);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    }
    stmt = NEXT_PASS(ConvertDivModToShift, stmt);
    if (!polyhedral || global_attrs.GetBoolAttr(kCoarsenImg2Col, false)) {
      // for conv manual schedule and load3d
      stmt = NEXT_PASS(CoarsenImg2Col, stmt);
    }
    stmt = NEXT_PASS(DTypeAdapter, stmt);
    if (global_attrs.GetBoolAttr(kEnableHoistInsn, true)) {
      stmt = NEXT_PASS(HoistInsn, stmt);
    }
    // temp disable InvariantHoist for dynamic shape because it may move LetStmt out of scope
    if (global_attrs.GetBoolAttr(kEnableInvariantHoist, true)) {
      stmt = NEXT_PASS(InvariantHoist, stmt);
    }
    stmt = NEXT_PASS(SetVectorMaskDefault, stmt);
    stmt = NEXT_PASS(ElimVectorMask, stmt);
    stmt = NEXT_PASS(ElimDMA, stmt);
    if (!is_dynamic) {
      stmt = NEXT_PASS(MultiCorePartition, stmt);
C
ckey_Dou 已提交
848 849
    }

850 851 852 853
    if (global_attrs.GetBoolAttr(kEnableDoubleBuffer, true)) {
      stmt = NEXT_PASS(AutoDoubleBuffer, stmt);
    }
    stmt = NEXT_PASS(InjectAccessPtrMSG, stmt);
D
dabaiji 已提交
854
    if (target != "aicpu") {
855 856 857
      stmt = NEXT_PASS(InjectPipe, stmt);
    }
    stmt = NEXT_PASS(ModDivEliminate, stmt);
C
ckey_Dou 已提交
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    // Phase 2
    if (!simple_mode && global_attrs.GetBoolAttr(kEnablePostPolyLoopPartition, true) && !is_dynamic) {
      stmt = NEXT_PASS(LoopPartitionCCE, stmt, config->partition_const_loop, true, !polyhedral);
    }
    if (global_attrs.GetBoolAttr(kEnablePreStorageWriteSimplify, false)) {
      stmt = NEXT_PASS(AlgebraSimplify, stmt);
    }
    std::string maxsat_filename = global_attrs.GetStringAttr(kMaxsatFile, std::string());
    // attempt to optimize UB memory layout to reduce bank conflicts and pipeline conflicts
    bool use_bc_opt = global_attrs.GetBoolAttr(kUseBcOpt, true);
    // run MaxSAT solver for bank conflicts with no limits on model size or runtime
    bool bc_no_limits = false;
    // timeout for MaxSAT solver in seconds (int)
    int maxsat_timeout = 4;
    try {
      stmt = NEXT_PASS(StorageRewriteCCE, stmt, maxsat_filename, use_bc_opt, bc_no_limits, maxsat_timeout);
    } catch (MemoryAllocationException &e) {
      if (enter_count >= max_enter_poly_times) {
        CHECK(false) << e.what();
      }
879
      global_attrs.Set(kAllocBits, air::make_const(Int(32), e.alloc_bits_ + e.need_bits_));
880 881 882 883
      global_attrs.Set(kErrorScope, StringImm::make(e.scope_));
      continue;
    }
    break;
C
ckey_Dou 已提交
884 885 886 887 888 889 890 891
  }

  if (!is_dynamic)
    stmt = NEXT_PASS(UnrollLoop, stmt, config->auto_unroll_max_step, config->auto_unroll_max_depth,
                     config->auto_unroll_max_extent, config->unroll_explicit);

  stmt = NEXT_PASS(SpecialValueReplacer, stmt);
  stmt = NEXT_PASS(Simplify, stmt);
D
dabaiji 已提交
892
  if (target != "aicpu") {
C
ckey_Dou 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
    stmt = NEXT_PASS(InjectSync, stmt);
  }

  // Phase 3
  stmt = NEXT_PASS(RemoveAccessPtrMSG, stmt);
  if (is_dynamic) {
    // check undefined loop vars
    stmt = NEXT_PASS(UnifyLoopVars, stmt, binds_0, arg_list_0);
    stmt = NEXT_PASS(PromoteLetStmt, stmt, arg_list_0);
    if (global_attrs.GetBoolAttr(kPromoteCommonExpr, true)) {
      stmt = NEXT_PASS(PromoteCommonExpr, stmt);
    }
    if (global_attrs.GetBoolAttr(kPromoteConstExpr, true)) {
      stmt = NEXT_PASS(PromoteConstExpr, stmt);
    }
  }
  stmt = NEXT_PASS(Simplify, stmt);
  stmt = NEXT_PASS(LowerStorageAccessInfoCCE, stmt);
  if (is_dynamic) {
    stmt = NEXT_PASS(RewriteFloorDiv, stmt);
    stmt = NEXT_PASS(RemoveAssert, stmt);
  }
  stmt = NEXT_PASS(RemoveNoOp, stmt);
  if (is_dynamic) {
    stmt = NEXT_PASS(SpecifyMinMaxDataType, stmt);
  }
  if (!config->disable_select_rewriting) {
    stmt = NEXT_PASS(RewriteUnsafeSelect, stmt);
  }

  if (is_dynamic) {
    Array<NodeRef> collect_res = NEXT_PASS(CollectExternalCall, stmt);
    CHECK_EQ(collect_res.size(), 2);
926 927
    stmt = air::Downcast<Stmt>(collect_res[0]);
    g_external_call_name = air::Downcast<Array<NodeRef>>(collect_res[1]);
C
ckey_Dou 已提交
928 929 930
    // CastKernelParams should be before DecorateDeviceScope
    Array<NodeRef> cast_res = NEXT_PASS(CastKernelParams, stmt, arg_list_0);
    CHECK_EQ(cast_res.size(), 2);
931 932
    stmt = air::Downcast<Stmt>(cast_res[0]);
    arg_list_0 = air::Downcast<Array<NodeRef>>(cast_res[1]);
C
ckey_Dou 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
  }

  stmt = NEXT_PASS(DecorateDeviceScope, stmt);

  // Instrument BoundCheckers
  if (config->instrument_bound_checkers) {
    stmt = NEXT_PASS(InstrumentBoundCheckers, stmt);
  }

  if (simple_mode) {
    return stmt;
  }
  PassMgr::SetArgs(arg_list_0);
  LoweredFunc lowered_func = NEXT_PASS(MakeAPI, stmt, name, arg_list_0, 0, config->restricted_func);

  LOG(INFO) << *pass_timer;
  pass_timer->Clear();

  return lowered_func;
}

void BuildForDevice(const Array<LoweredFunc> &flist, const std::string &target_name,
                    const std::string &target_host_name, Array<LoweredFunc> *out_flist,
956
                    air::runtime::Module *out_mdev) {
C
ckey_Dou 已提交
957 958 959 960 961 962 963
  CHECK(out_flist != nullptr) << "out_flist is nullptr.";
  CHECK(out_mdev != nullptr) << "out_mdev is nullptr.";

  Target target = Target::Create(target_name);
  TVMContext context{kDLCce, 0};
  DLDeviceType device_type = context.device_type;

D
dabaiji 已提交
964
  Array<LoweredFunc> fhost;
C
ckey_Dou 已提交
965
  Array<LoweredFunc> fdevice;
D
dabaiji 已提交
966
  for (auto func : flist) {
967
    if (func->func_type == air::LoweredFuncType::kMixedFunc) {
D
dabaiji 已提交
968 969 970 971 972 973 974 975 976
      if (target_name == "cuda") {
        if (BuildConfig::Current()->detect_global_barrier) {
          func = NEXT_PASS(ThreadSync, func, "global");
        }
        func = NEXT_PASS(ThreadSync, func, "shared");
        func = NEXT_PASS(ThreadSync, func, "warp");
        func = NEXT_PASS(InferFragment, func);
        func = NEXT_PASS(LowerThreadAllreduce, func, target->thread_warp_size);
      }
C
ckey_Dou 已提交
977
      Array<LoweredFunc> fsplits = NEXT_PASS(SplitHostDevice, func);
D
dabaiji 已提交
978
      fhost.push_back(fsplits[0]);
C
ckey_Dou 已提交
979 980 981
      for (size_t idx = 1; idx < fsplits.size(); idx++) {
        fdevice.push_back(fsplits[idx]);
      }
982
    } else if (func->func_type == air::LoweredFuncType::kHostFunc) {
D
dabaiji 已提交
983
      fhost.push_back(func);
984
    } else if (func->func_type == air::LoweredFuncType::kDeviceFunc) {
D
dabaiji 已提交
985
      fdevice.push_back(func);
C
ckey_Dou 已提交
986 987 988 989 990
    } else {
      LOG(FATAL) << "unknown function type " << func->func_type;
    }
  }

D
dabaiji 已提交
991 992 993 994
  if (target_name == "cuda") {
    for (size_t i = 0; i < fdevice.size(); ++i) {
      fdevice.Set(i, NEXT_PASS(LowerWarpMemory, fdevice[i], target->thread_warp_size));
    }
C
ckey_Dou 已提交
995
  }
D
dabaiji 已提交
996 997 998 999

  for (size_t i = 0; i < fhost.size(); ++i) {
    fhost.Set(i, NEXT_PASS(BindDeviceType, fhost[i], static_cast<int>(device_type)));
    fhost.Set(i, NEXT_PASS(LowerTVMBuiltin, fhost[i]));
C
ckey_Dou 已提交
1000 1001 1002
  }

  Target target_host = Target::Create(target_host_name);
D
dabaiji 已提交
1003 1004 1005 1006 1007 1008

  for (size_t i = 0; i < fdevice.size(); ++i) {
    if (target_name == "cuda") {
      fdevice.Set(i, NEXT_PASS(LowerDeviceStorageAccessInfo, fdevice[i]));
    }
    fdevice.Set(i, NEXT_PASS(LowerIntrin, fdevice[i], target->target_name));
C
ckey_Dou 已提交
1009 1010
  }

D
dabaiji 已提交
1011 1012 1013 1014 1015 1016
  for (size_t i = 0; i < fhost.size(); ++i) {
    if (target_name == "cuda") {
      fhost.Set(i, NEXT_PASS(LowerDeviceStorageAccessInfo, fhost[i]));
    }
    fhost.Set(i, NEXT_PASS(LowerIntrin, fhost[i], target_host->target_name));
    fhost.Set(i, NEXT_PASS(CombineContextCall, fhost[i]));
C
ckey_Dou 已提交
1017
  }
D
dabaiji 已提交
1018 1019 1020

  for (const auto &func : fhost) {
    out_flist->push_back(func);
C
ckey_Dou 已提交
1021
  }
D
dabaiji 已提交
1022
  *out_mdev = air::codegen::Build(fdevice, target_name, g_external_call_name);
C
ckey_Dou 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  return;
}

BuildRst BuildRstNode::make(const NodeRef &rst, const std::string &kernel_name) {
  NodePtr<BuildRstNode> node = make_node<BuildRstNode>();

  node->rst = rst;
  node->kernel_name = kernel_name;

  return BuildRst(node);
}

TVM_REGISTER_NODE_TYPE(BuildRstNode);

BuildRst BuildToFunc(const Schedule &inputs, const Array<NodeRef> &in_args, const Array<NodeRef> &shape_vars,
                     const std::string &name, const Map<Tensor, Buffer> &in_binds,
D
dabaiji 已提交
1039
                     const Map<std::string, NodeRef> &in_attrs, bool polyhedral, const std::string &target,
C
ckey_Dou 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                     const BuildConfig &config) {
  CHECK(inputs.defined()) << "inputs is not defined.";
  CHECK(!name.empty()) << "name is empty.";

  Array<NodeRef> args;
  if (in_args.defined()) {
    args = in_args;
  }
  Map<Tensor, Buffer> binds;
  if (in_binds.defined()) {
    binds = in_binds;
  }
  Map<std::string, NodeRef> attrs;
  if (in_attrs.defined()) {
    attrs = in_attrs;
  }

D
dabaiji 已提交
1057
  auto rst = Lower(inputs, args, shape_vars, name, binds, attrs, false, polyhedral, false, target, config);
C
ckey_Dou 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
  return BuildRstNode::make(rst, name);
}

namespace {
void CreateCce(const std::string &code, const std::string &kernel_name) {
  std::string file_name = kMsDavinciKernelPath;
  file_name.append(kernel_name).append(".cce");
  std::ofstream of(file_name);
  CHECK(of.is_open()) << "Failed to open " << file_name << " to dump cce.";
  of << code << std::endl;
  of.close();
}
}  // namespace

1072
air::runtime::Module BuildToModule(const NodeRef &ref, const std::string &target_name) {
C
ckey_Dou 已提交
1073 1074 1075 1076 1077 1078 1079
  CHECK(!target_name.empty()) << "target_name is empty.";

  auto build_rst = Downcast<BuildRst>(ref);
  auto res = build_rst->rst;

  Array<LoweredFunc> lowered_func_list;
  if (res->IsInstance<LoweredFuncNode>()) {
1080
    LoweredFunc lowered_func = air::Downcast<LoweredFunc>(res);
C
ckey_Dou 已提交
1081 1082 1083
    lowered_func_list.push_back(lowered_func);
  }
  if (lowered_func_list.empty()) {
1084
    return air::runtime::Module(nullptr);
C
ckey_Dou 已提交
1085 1086 1087 1088 1089 1090
  }

  Map<std::string, Array<LoweredFunc>> target_flist;
  target_flist.Set(target_name, lowered_func_list);

  Array<LoweredFunc> fhost_all;
1091
  std::vector<air::runtime::Module> device_modules;
C
ckey_Dou 已提交
1092 1093 1094

  for (auto iter : target_flist) {
    Array<LoweredFunc> out_flist;
1095
    air::runtime::Module out_mdev;
C
ckey_Dou 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    BuildForDevice(iter.second, iter.first, kAkgTargetHostName, &out_flist, &out_mdev);

    // Save the current lowered functions of the host and the device module.
    for (const auto &func : out_flist) {
      fhost_all.push_back(func);
    }
    device_modules.push_back(out_mdev);
  }

  // Generate a unified host module.
1106
  air::runtime::Module mhost = air::codegen::Build(fhost_all, kAkgTargetHostName, g_external_call_name);
C
ckey_Dou 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

  // Import all modules.
  for (const auto &mdev : device_modules) {
    mhost.Import(mdev);
  }

  const char *akg_dump_cce = getenv("MS_AKG_DUMP_CCE");
  if (akg_dump_cce != nullptr) {
    auto mod0 = mhost->imports()[0];
    CHECK(mod0.defined());

    CreateCce(mod0->GetSource(), build_rst->kernel_name);
  }

  return mhost;
}

1124
air::runtime::Module BuildModule(const Schedule &inputs, const Array<NodeRef> &in_args,
D
dabaiji 已提交
1125 1126 1127 1128 1129
                                 const Array<NodeRef> &shape_vars, const std::string &target_name,
                                 const std::string &name, const Map<Tensor, Buffer> &in_binds,
                                 const Map<std::string, NodeRef> &in_attrs, bool polyhedral, const std::string &target,
                                 const BuildConfig &config) {
  auto func = BuildToFunc(inputs, in_args, shape_vars, name, in_binds, in_attrs, polyhedral, target, config);
C
ckey_Dou 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

  return BuildToModule(func, target_name);
}

TVM_REGISTER_API("_BuildModule").set_body_typed(BuildModule);
TVM_REGISTER_API("_BuildToFunc").set_body_typed(BuildToFunc);
TVM_REGISTER_API("_BuildToModule").set_body([](const TVMArgs &args, TVMRetValue *ret) {
  if (args.size() == 1) {
    *ret = BuildToModule(args[0]);
  } else if (args.size() == 2) {
    *ret = BuildToModule(args[0], args[1]);
  } else {
    LOG(FATAL) << "arg num must be 1 or 2, but given " << args.size();
  }
});

TVM_REGISTER_API("_Lower").set_body([](const TVMArgs &args, TVMRetValue *ret) {
  if (args.size() == 11) {
    NodeRef lowered_func =
      Lower(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9], args[10]);
    *ret = lowered_func;
  }
});

TVM_REGISTER_API("akg.build_module.get_binds").set_body([](const TVMArgs &args, TVMRetValue *ret) {
  auto config = BuildConfig::Current();
  Array<NodeRef> inputs;
  Map<Tensor, Buffer> binds;
  if (args.size() >= 1) {
    inputs = args[0];
  } else if (args.size() >= 2) {
    inputs = args[0];
    binds = args[1];
  }

  Array<NodeRef> out_inputs;
  Map<Tensor, Buffer> out_binds;

  GetBinds(inputs, binds, config, &out_inputs, &out_binds);
  *ret = Array<NodeRef>{out_binds, out_inputs};
});
}  // namespace akg