sched_rt.c 19.8 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7 8 9 10 11

/*
 * The "RT overload" flag: it gets set if a CPU has more than
 * one runnable RT task.
 */
S
Steven Rostedt 已提交
12 13
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
I
Ingo Molnar 已提交
14

S
Steven Rostedt 已提交
15 16 17 18
static inline int rt_overloaded(void)
{
	return atomic_read(&rto_count);
}
I
Ingo Molnar 已提交
19

S
Steven Rostedt 已提交
20 21
static inline void rt_set_overload(struct rq *rq)
{
G
Gregory Haskins 已提交
22
	rq->rt.overloaded = 1;
S
Steven Rostedt 已提交
23 24 25 26 27 28 29 30 31 32 33
	cpu_set(rq->cpu, rt_overload_mask);
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
	atomic_inc(&rto_count);
}
I
Ingo Molnar 已提交
34

S
Steven Rostedt 已提交
35 36 37 38 39
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
	atomic_dec(&rto_count);
	cpu_clear(rq->cpu, rt_overload_mask);
G
Gregory Haskins 已提交
40
	rq->rt.overloaded = 0;
S
Steven Rostedt 已提交
41
}
42 43 44 45 46 47 48 49

static void update_rt_migration(struct rq *rq)
{
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
		rt_set_overload(rq);
	else
		rt_clear_overload(rq);
}
S
Steven Rostedt 已提交
50 51
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
52 53 54 55
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
56
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
57 58 59 60 61 62 63
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

64
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
65 66
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
67 68

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
69 70

	curr->se.sum_exec_runtime += delta_exec;
71
	curr->se.exec_start = rq->clock;
72
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
73 74
}

75 76 77 78
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
79 80 81
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
82 83 84 85
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
86
#endif /* CONFIG_SMP */
87 88 89 90 91 92 93
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
94 95 96 97 98 99 100 101 102 103 104 105 106
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
107 108 109 110
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
111
#endif /* CONFIG_SMP */
112 113
}

114
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
115 116 117 118 119
{
	struct rt_prio_array *array = &rq->rt.active;

	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
120
	inc_cpu_load(rq, p->se.load.weight);
121 122

	inc_rt_tasks(p, rq);
I
Ingo Molnar 已提交
123 124 125 126 127
}

/*
 * Adding/removing a task to/from a priority array:
 */
128
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
129 130 131
{
	struct rt_prio_array *array = &rq->rt.active;

132
	update_curr_rt(rq);
I
Ingo Molnar 已提交
133 134 135 136

	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
137
	dec_cpu_load(rq, p->se.load.weight);
138 139

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

	list_move_tail(&p->run_list, array->queue + p->prio);
}

static void
154
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
155
{
156
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
157 158
}

159
#ifdef CONFIG_SMP
160 161
static int find_lowest_rq(struct task_struct *task);

162 163
static int select_task_rq_rt(struct task_struct *p, int sync)
{
164 165 166
	struct rq *rq = task_rq(p);

	/*
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
182
	 */
183 184
	if (unlikely(rt_task(rq->curr)) &&
	    (p->nr_cpus_allowed > 1)) {
185 186 187 188 189 190 191 192 193
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
194 195 196 197
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
198 199 200 201 202 203 204 205 206
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

207
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
	next = list_entry(queue->next, struct task_struct, run_list);

221
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
222 223 224 225

	return next;
}

226
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
227
{
228
	update_curr_rt(rq);
I
Ingo Molnar 已提交
229 230 231
	p->se.exec_start = 0;
}

232
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
233 234 235 236 237 238
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

239 240 241
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
242 243
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
244 245 246 247
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
248
/* Return the second highest RT task, NULL otherwise */
249
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
266 267
	BUG_ON(list_empty(queue));

S
Steven Rostedt 已提交
268
	next = list_entry(queue->next, struct task_struct, run_list);
269 270
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
271 272 273

	if (queue->next->next != queue) {
		/* same prio task */
274 275
		next = list_entry(queue->next->next, struct task_struct,
				  run_list);
276 277
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
278 279
	}

280
 retry:
S
Steven Rostedt 已提交
281 282
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
283
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
284 285 286
		return NULL;

	queue = array->queue + idx;
287 288 289 290 291 292 293 294
	BUG_ON(list_empty(queue));

	list_for_each_entry(next, queue, run_list) {
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
295

296
 out:
S
Steven Rostedt 已提交
297 298 299 300 301
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
302
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
303
{
G
Gregory Haskins 已提交
304
	int       lowest_prio = -1;
305
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
306
	int       count       = 0;
307
	int       cpu;
S
Steven Rostedt 已提交
308

309
	cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
S
Steven Rostedt 已提交
310

311 312 313
	/*
	 * Scan each rq for the lowest prio.
	 */
314
	for_each_cpu_mask(cpu, *lowest_mask) {
315
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
316

317 318
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
319 320 321 322 323 324 325 326 327
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
328
				cpus_clear(*lowest_mask);
329 330
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
331
			return 1;
332 333 334
		}

		/* no locking for now */
G
Gregory Haskins 已提交
335 336 337 338 339
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
340 341
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
342
			}
G
Gregory Haskins 已提交
343
			count++;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
363
		}
364 365
	}

G
Gregory Haskins 已提交
366
	return count;
G
Gregory Haskins 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
390 391 392 393
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
394

G
Gregory Haskins 已提交
395 396 397 398 399 400
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
440 441 442
}

/* Will lock the rq it finds */
443
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
444 445 446
{
	struct rq *lowest_rq = NULL;
	int tries;
447
	int cpu;
S
Steven Rostedt 已提交
448

449 450 451
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

452
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
453 454
			break;

455 456
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
457
		/* if the prio of this runqueue changed, try again */
458
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
459 460 461 462 463 464
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
465
			if (unlikely(task_rq(task) != rq ||
466 467
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
468
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
469
				     !task->se.on_rq)) {
470

S
Steven Rostedt 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
494
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
495 496 497 498 499 500
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
501 502 503
	if (!rq->rt.overloaded)
		return 0;

504
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
505 506 507 508
	if (!next_task)
		return 0;

 retry:
509
	if (unlikely(next_task == rq->curr)) {
510
		WARN_ON(1);
S
Steven Rostedt 已提交
511
		return 0;
512
	}
S
Steven Rostedt 已提交
513 514 515 516 517 518

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
519 520
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
521 522 523
		return 0;
	}

524
	/* We might release rq lock */
S
Steven Rostedt 已提交
525 526 527
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
528
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
529 530 531
	if (!lowest_rq) {
		struct task_struct *task;
		/*
532
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
533 534 535
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
536
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
537 538 539 540 541 542 543 544
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

545
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

577 578
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
579 580
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
581 582 583 584 585 586 587 588 589 590 591 592 593
	struct rq *src_rq;

	/*
	 * If cpusets are used, and we have overlapping
	 * run queue cpusets, then this algorithm may not catch all.
	 * This is just the price you pay on trying to keep
	 * dirtying caches down on large SMP machines.
	 */
	if (likely(!rt_overloaded()))
		return 0;

	next = pick_next_task_rt(this_rq);

I
Ingo Molnar 已提交
594
	for_each_cpu_mask(cpu, rt_overload_mask) {
595 596 597 598 599 600 601 602 603 604 605 606 607
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
			/*
			 * It is possible that overlapping cpusets
			 * will miss clearing a non overloaded runqueue.
			 * Clear it now.
			 */
			if (double_lock_balance(this_rq, src_rq)) {
				/* unlocked our runqueue lock */
				struct task_struct *old_next = next;
I
Ingo Molnar 已提交
608

609 610 611 612
				next = pick_next_task_rt(this_rq);
				if (next != old_next)
					ret = 1;
			}
I
Ingo Molnar 已提交
613
			if (likely(src_rq->rt.rt_nr_running <= 1)) {
614 615 616 617 618
				/*
				 * Small chance that this_rq->curr changed
				 * but it's really harmless here.
				 */
				rt_clear_overload(this_rq);
I
Ingo Molnar 已提交
619
			} else {
620 621 622 623 624 625
				/*
				 * Heh, the src_rq is now overloaded, since
				 * we already have the src_rq lock, go straight
				 * to pulling tasks from it.
				 */
				goto try_pulling;
I
Ingo Molnar 已提交
626
			}
627 628 629 630 631 632 633 634 635 636 637 638 639
			spin_unlock(&src_rq->lock);
			continue;
		}

		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

 try_pulling:
		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
I
Ingo Molnar 已提交
677
				goto out;
678 679 680 681 682 683 684 685 686 687 688

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
689
			 *
690 691 692 693 694 695 696
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
I
Ingo Molnar 已提交
697
 out:
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

static void schedule_balance_rt(struct rq *rq,
				struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	if (unlikely(rt_task(prev)) &&
	    rq->rt.highest_prio > prev->prio)
		pull_rt_task(rq);
}

S
Steven Rostedt 已提交
713 714 715 716 717 718 719 720 721
static void schedule_tail_balance_rt(struct rq *rq)
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
722
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
723 724 725 726 727 728
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

729 730 731 732 733

static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
{
	if (unlikely(rt_task(p)) &&
	    !task_running(rq, p) &&
G
Gregory Haskins 已提交
734 735
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
736 737 738
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
739
static unsigned long
I
Ingo Molnar 已提交
740
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
741 742 743
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
744
{
745 746
	/* don't touch RT tasks */
	return 0;
747 748 749 750 751 752
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
753 754
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
755
}
756

757 758 759 760 761 762 763 764 765 766 767 768 769
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

770
		if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
771
			rq->rt.rt_nr_migratory++;
772
		} else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
773 774 775 776 777 778 779 780 781 782
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
783

S
Steven Rostedt 已提交
784 785
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq)	do { } while (0)
786
# define schedule_balance_rt(rq, prev)	do { } while (0)
787
# define wakeup_balance_rt(rq, p)	do { } while (0)
S
Steven Rostedt 已提交
788
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
789 790 791

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
792 793
	update_curr_rt(rq);

I
Ingo Molnar 已提交
794 795 796 797 798 799 800 801 802 803
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

	if (--p->time_slice)
		return;

D
Dmitry Adamushko 已提交
804
	p->time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
805

806 807 808 809 810 811 812 813
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
	if (p->run_list.prev != p->run_list.next) {
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
814 815
}

816 817 818 819 820 821 822
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

823 824
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
825 826 827
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
828 829 830
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
831 832 833 834 835 836

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

837
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
838
	.load_balance		= load_balance_rt,
839
	.move_one_task		= move_one_task_rt,
840
	.set_cpus_allowed       = set_cpus_allowed_rt,
841
#endif
I
Ingo Molnar 已提交
842

843
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
844 845
	.task_tick		= task_tick_rt,
};