m25p80.c 24.4 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
22
#include <linux/mutex.h>
23
#include <linux/math64.h>
24
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
25

26 27
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
28

29 30 31 32 33 34 35
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>


#define FLASH_PAGESIZE		256

/* Flash opcodes. */
36 37
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
38
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
39
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
40 41
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
42
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
43
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
44
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
45
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
46 47
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

48 49 50 51 52
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

53 54 55
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
56
/* meaning of other SR_* bits may differ between vendors */
57 58 59 60 61 62
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
63
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
64
#define	CMD_SIZE		4
65

66 67 68 69 70 71 72
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
73 74 75 76 77

/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
78
	struct mutex		lock;
79
	struct mtd_info		mtd;
80 81
	unsigned		partitioned:1;
	u8			erase_opcode;
82
	u8			*command;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

118 119 120 121 122 123 124 125 126 127 128
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
129 130 131 132 133 134 135 136 137

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

138
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
139 140
}

141 142 143 144 145 146 147 148 149
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
150 151 152 153 154 155 156

/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
157
	unsigned long deadline;
158 159
	int sr;

P
Peter Horton 已提交
160 161 162
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
163 164 165 166 167
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
168 169 170
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
171 172 173 174

	return 1;
}

C
Chen Gong 已提交
175 176 177 178 179
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
180
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
181
{
182
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
183 184
	      dev_name(&flash->spi->dev), __func__,
	      (long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
185 186 187 188 189 190 191 192 193

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
194
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
195 196 197 198 199

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
200 201 202 203 204 205 206 207 208

/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
209
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
210
			dev_name(&flash->spi->dev), __func__,
211
			flash->mtd.erasesize / 1024, offset);
212 213 214 215 216 217 218 219 220

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
221
	flash->command[0] = flash->erase_opcode;
222 223 224 225
	flash->command[1] = offset >> 16;
	flash->command[2] = offset >> 8;
	flash->command[3] = offset;

226
	spi_write(flash->spi, flash->command, CMD_SIZE);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
245
	uint32_t rem;
246

247
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
248 249
	      dev_name(&flash->spi->dev), __func__, "at",
	      (long long)instr->addr, (long long)instr->len);
250 251 252 253

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
254 255
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
256 257 258 259 260
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
261
	mutex_lock(&flash->lock);
262

263
	/* whole-chip erase? */
264 265 266 267 268 269
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
270 271 272 273 274 275 276

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
277 278 279 280 281 282 283 284 285 286
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
287 288 289
		}
	}

D
David Brownell 已提交
290
	mutex_unlock(&flash->lock);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
310
			dev_name(&flash->spi->dev), __func__, "from",
311 312 313 314 315 316 317 318 319
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

320 321 322
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

323 324 325 326
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
327
	t[0].tx_buf = flash->command;
328
	t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
329 330 331 332 333 334 335 336 337 338
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
	if (retlen)
		*retlen = 0;

D
David Brownell 已提交
339
	mutex_lock(&flash->lock);
340 341 342 343

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
344
		mutex_unlock(&flash->lock);
345 346 347
		return 1;
	}

348 349 350 351
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
352 353 354 355 356 357 358 359 360

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
	flash->command[1] = from >> 16;
	flash->command[2] = from >> 8;
	flash->command[3] = from;

	spi_sync(flash->spi, &m);

361
	*retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
362

D
David Brownell 已提交
363
	mutex_unlock(&flash->lock);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
382
			dev_name(&flash->spi->dev), __func__, "to",
383 384 385 386 387 388 389 390 391 392 393 394
			(u32)to, len);

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

395 396 397 398
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
399
	t[0].len = CMD_SIZE;
400 401 402 403 404
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
405
	mutex_lock(&flash->lock);
406 407

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
408 409
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
410
		return 1;
C
Chen Gong 已提交
411
	}
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* what page do we start with? */
	page_offset = to % FLASH_PAGESIZE;

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= FLASH_PAGESIZE) {
		t[1].len = len;

		spi_sync(flash->spi, &m);

430
		*retlen = m.actual_length - CMD_SIZE;
431 432 433 434 435 436 437 438 439
	} else {
		u32 i;

		/* the size of data remaining on the first page */
		page_size = FLASH_PAGESIZE - page_offset;

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

440
		*retlen = m.actual_length - CMD_SIZE;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

		/* write everything in PAGESIZE chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > FLASH_PAGESIZE)
				page_size = FLASH_PAGESIZE;

			/* write the next page to flash */
			flash->command[1] = (to + i) >> 16;
			flash->command[2] = (to + i) >> 8;
			flash->command[3] = (to + i);

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
David Brownell 已提交
462
			if (retlen)
463
				*retlen += m.actual_length - CMD_SIZE;
D
David Brownell 已提交
464 465
		}
	}
466

D
David Brownell 已提交
467
	mutex_unlock(&flash->lock);
468 469 470 471

	return 0;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
	t[0].len = CMD_SIZE;
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
		flash->command[1] = to >> 16;
		flash->command[2] = to >> 8;
		flash->command[3] = to;

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - CMD_SIZE;
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* Write out most of the data here. */
	cmd_sz = CMD_SIZE;
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
		flash->command[1] = to >> 16;
		flash->command[2] = to >> 8;
		flash->command[3] = to;
		t[0].len = CMD_SIZE;
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - CMD_SIZE;
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
577 578 579 580 581 582 583 584

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
585 586 587 588 589
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
590
	u16             ext_id;
591 592 593 594

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
595
	unsigned	sector_size;
596 597 598 599
	u16		n_sectors;

	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
600 601
};

602 603 604 605 606 607 608 609
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.flags = (_flags),					\
	})
610 611 612 613 614

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
615
static const struct spi_device_id m25p_ids[] = {
616
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
617 618
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
619

620 621
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
622

623 624 625 626
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
627

628
	/* Macronix */
629 630 631 632
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
633

634 635 636
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
637 638 639 640 641 642 643 644 645
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
646 647

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
648 649 650 651 652 653 654 655
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
656 657

	/* ST Microelectronics -- newer production may have feature updates */
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
674

675
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
676 677 678 679 680 681 682 683
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ },
684
};
685
MODULE_DEVICE_TABLE(spi, m25p_ids);
686

687
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
688 689 690
{
	int			tmp;
	u8			code = OPCODE_RDID;
691
	u8			id[5];
692
	u32			jedec;
693
	u16                     ext_jedec;
694 695 696 697 698 699
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
700
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
701 702
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
703
			dev_name(&spi->dev), tmp);
704 705 706 707 708 709 710 711
		return NULL;
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

712 713 714 715 716 717 718 719
	/*
	 * Some chips (like Numonyx M25P80) have JEDEC and non-JEDEC variants,
	 * which depend on technology process. Officially RDID command doesn't
	 * exist for non-JEDEC chips, but for compatibility they return ID 0.
	 */
	if (jedec == 0)
		return NULL;

720 721
	ext_jedec = id[3] << 8 | id[4];

722 723
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
724
		if (info->jedec_id == jedec) {
725
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
726
				continue;
727
			return &m25p_ids[tmp];
728
		}
729 730 731 732 733
	}
	return NULL;
}


734 735 736 737 738 739 740
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
741
	const struct spi_device_id	*id = spi_get_device_id(spi);
742 743 744 745 746 747
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
748 749 750
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
751 752
	 */
	data = spi->dev.platform_data;
753
	if (data && data->type) {
754 755
		const struct spi_device_id *plat_id;

756
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
757 758
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
759 760
				continue;
			break;
761
		}
762

763 764 765 766
		if (plat_id)
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
767
	}
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
		if (!jid) {
			dev_info(&spi->dev, "non-JEDEC variant of %s\n",
				 id->name);
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
792

793
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
794 795
	if (!flash)
		return -ENOMEM;
796 797 798 799 800
	flash->command = kmalloc(CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
801 802

	flash->spi = spi;
D
David Brownell 已提交
803
	mutex_init(&flash->lock);
804 805
	dev_set_drvdata(&spi->dev, flash);

806
	/*
807 808
	 * Atmel and SST serial flash tend to power
	 * up with the software protection bits set
809 810
	 */

811 812
	if (info->jedec_id >> 16 == 0x1f ||
	    info->jedec_id >> 16 == 0xbf) {
813 814 815 816
		write_enable(flash);
		write_sr(flash, 0);
	}

817
	if (data && data->name)
818 819
		flash->mtd.name = data->name;
	else
820
		flash->mtd.name = dev_name(&spi->dev);
821 822

	flash->mtd.type = MTD_NORFLASH;
823
	flash->mtd.writesize = 1;
824 825 826 827
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
828 829 830 831 832 833

	/* sst flash chips use AAI word program */
	if (info->jedec_id >> 16 == 0xbf)
		flash->mtd.write = sst_write;
	else
		flash->mtd.write = m25p80_write;
834

835 836 837 838 839 840 841 842 843
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

844 845
	flash->mtd.dev.parent = &spi->dev;

846
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
847
			(long long)flash->mtd.size >> 10);
848 849

	DEBUG(MTD_DEBUG_LEVEL2,
850
		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
851
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
852
		flash->mtd.name,
853
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
854 855 856 857 858 859
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
860
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
861
				".erasesize = 0x%.8x (%uKiB), "
862
				".numblocks = %d }\n",
863
				i, (long long)flash->mtd.eraseregions[i].offset,
864 865 866 867 868 869 870 871 872 873 874 875
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

876 877 878
		if (mtd_has_cmdlinepart()) {
			static const char *part_probes[]
					= { "cmdlinepart", NULL, };
879

880 881 882
			nr_parts = parse_mtd_partitions(&flash->mtd,
					part_probes, &parts, 0);
		}
883 884 885 886 887 888 889

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

		if (nr_parts > 0) {
890
			for (i = 0; i < nr_parts; i++) {
891
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
892 893
					"{.name = %s, .offset = 0x%llx, "
						".size = 0x%llx (%lldKiB) }\n",
894
					i, parts[i].name,
895 896 897
					(long long)parts[i].offset,
					(long long)parts[i].size,
					(long long)(parts[i].size >> 10));
898 899 900 901
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
902
	} else if (data && data->nr_parts)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
920 921
	if (status == 0) {
		kfree(flash->command);
922
		kfree(flash);
923
	}
924 925 926 927 928 929 930 931 932 933
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
934
	.id_table	= m25p_ids,
935 936
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
937 938 939 940 941

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
942 943 944
};


945
static int __init m25p80_init(void)
946 947 948 949 950
{
	return spi_register_driver(&m25p80_driver);
}


951
static void __exit m25p80_exit(void)
952 953 954 955 956 957 958 959 960 961 962
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");