intel_dp.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
36
#include "drm_dp_helper.h"
37

38

39 40 41 42 43
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

44 45
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)

46 47 48 49 50
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
51
	int dpms_mode;
52 53 54
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
55
	struct intel_encoder *intel_encoder;
56 57 58 59 60
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
61
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
62 63 64
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
65
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
66

67
void
68
intel_edp_link_config (struct intel_encoder *intel_encoder,
69 70
		int *lane_num, int *link_bw)
{
71
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
72 73 74 75 76 77 78 79

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

80
static int
81
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
82
{
83
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
99
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
100
{
101
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
126
intel_dp_link_required(struct drm_device *dev,
127
		       struct intel_encoder *intel_encoder, int pixel_clock)
128
{
129 130
	struct drm_i915_private *dev_priv = dev->dev_private;

131
	if (IS_eDP(intel_encoder))
132 133 134
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
135 136 137 138 139 140
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
141 142 143
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
144

145
	if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
146
			> max_link_clock * max_lanes)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

208
static int
209
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
210 211 212
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
213
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
214
	uint32_t output_reg = dp_priv->output_reg;
215
	struct drm_device *dev = intel_encoder->base.dev;
216 217 218 219 220 221 222
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
223 224
	uint32_t aux_clock_divider;
	int try;
225 226

	/* The clock divider is based off the hrawclk,
227 228
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
229
	 */
230
	if (IS_eDP(intel_encoder))
231
		aux_clock_divider = 225; /* eDP input clock at 450Mhz */
232
	else if (HAS_PCH_SPLIT(dev))
233
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
234 235 236
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

237 238 239 240
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
241
			uint32_t    d = pack_aux(send + i, send_bytes - i);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
		       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
266
		I915_WRITE(ch_ctl, (status |
267 268 269 270 271
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
272 273 274 275
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
276
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
277
		return -EBUSY;
278 279 280 281 282
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
283
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
284
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
285 286
		return -EIO;
	}
287 288 289

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
290
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
291
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
292
		return -ETIMEDOUT;
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
313
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
314 315 316 317 318 319 320 321 322 323 324
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
325
	msg[2] = address & 0xff;
326 327 328 329
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
330
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
331 332 333 334 335 336 337
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
338
			return -EIO;
339 340 341 342 343 344
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
345
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
346 347
			    uint16_t address, uint8_t byte)
{
348
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
349 350 351 352
}

/* read bytes from a native aux channel */
static int
353
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
372
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
373
				      reply, reply_bytes);
374 375 376
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
377 378 379 380 381 382 383 384 385
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
386
			return -EIO;
387 388 389 390
	}
}

static int
391 392
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
393
{
394
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
395 396 397
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
398
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
437
	  ret = intel_dp_aux_ch(intel_encoder,
438 439 440
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
441
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
442 443 444 445 446 447 448 449 450
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
451
			DRM_DEBUG_KMS("aux_ch nack\n");
452 453
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
454
			DRM_DEBUG_KMS("aux_ch defer\n");
455 456 457 458 459 460 461
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
462 463 464
}

static int
465
intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
466
{
467
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
468

Z
Zhenyu Wang 已提交
469
	DRM_DEBUG_KMS("i2c_init %s\n", name);
470 471 472 473 474 475 476
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
477 478
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
479
	dp_priv->adapter.algo_data = &dp_priv->algo;
480
	dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
481 482 483 484 485 486 487 488
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
489 490
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
491
	int lane_count, clock;
492 493
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
494 495 496 497 498 499
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;

500
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
501
					<= link_avail) {
502 503 504
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
505 506
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
562
	 * Find the lane count in the intel_encoder private
563 564
	 */
	list_for_each_entry(connector, &mode_config->connector_list, head) {
565 566
		struct intel_encoder *intel_encoder = to_intel_encoder(connector);
		struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
567 568 569 570

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

571
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
572 573 574 575 576 577 578 579 580 581 582 583 584
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

585
	if (HAS_PCH_SPLIT(dev)) {
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
601
	} else {
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
619 620 621 622 623 624 625
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
626 627 628
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	dp_priv->DP = (DP_LINK_TRAIN_OFF |
			DP_VOLTAGE_0_4 |
			DP_PRE_EMPHASIS_0 |
			DP_SYNC_VS_HIGH |
			DP_SYNC_HS_HIGH);

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
	 * Check for DPCD version > 1.1,
	 * enable enahanced frame stuff in that case
	 */
	if (dp_priv->dpcd[0] >= 0x11) {
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

	if (intel_crtc->pipe == 1)
		dp_priv->DP |= DP_PIPEB_SELECT;
666

667
	if (IS_eDP(intel_encoder)) {
668 669 670 671 672 673 674
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
675 676
}

677
static void ironlake_edp_backlight_on (struct drm_device *dev)
678 679 680 681
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

682
	DRM_DEBUG_KMS("\n");
683 684 685 686 687
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

688
static void ironlake_edp_backlight_off (struct drm_device *dev)
689 690 691 692
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

693
	DRM_DEBUG_KMS("\n");
694 695 696 697
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
698 699 700 701

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
702 703 704
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_device *dev = intel_encoder->base.dev;
705 706 707 708
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
709
		if (dp_reg & DP_PORT_EN) {
710 711
			intel_dp_link_down(intel_encoder, dp_priv->DP);
			if (IS_eDP(intel_encoder))
712
				ironlake_edp_backlight_off(dev);
713
		}
714
	} else {
715
		if (!(dp_reg & DP_PORT_EN)) {
716 717
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
			if (IS_eDP(intel_encoder))
718
				ironlake_edp_backlight_on(dev);
719
		}
720
	}
721
	dp_priv->dpms_mode = mode;
722 723 724 725 726 727 728
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
729
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
730 731 732 733
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

734
	ret = intel_dp_aux_native_read(intel_encoder,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
811
intel_get_adjust_train(struct intel_encoder *intel_encoder,
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
928
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
929 930 931 932 933
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
934
	struct drm_device *dev = intel_encoder->base.dev;
935
	struct drm_i915_private *dev_priv = dev->dev_private;
936
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
937 938 939 940 941 942 943
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

944
	intel_dp_aux_native_write_1(intel_encoder,
945 946 947
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

948
	ret = intel_dp_aux_native_write(intel_encoder,
949 950 951 952 953 954 955 956
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
957
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
958 959
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
960
	struct drm_device *dev = intel_encoder->base.dev;
961
	struct drm_i915_private *dev_priv = dev->dev_private;
962
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
963 964 965 966 967 968 969 970 971 972
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;

	/* Write the link configuration data */
973
	intel_dp_aux_native_write(intel_encoder, 0x100,
974 975 976 977 978 979 980 981 982 983 984 985 986
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
	DP &= ~DP_LINK_TRAIN_MASK;
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

987
		if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_1,
988 989 990 991 992 993
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
994
		if (!intel_dp_get_link_status(intel_encoder, link_status))
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1019
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		/* channel eq pattern */
1031
		if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_2,
1032 1033 1034 1035 1036
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1037
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1050
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1051 1052 1053 1054 1055
		++tries;
	}

	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
	POSTING_READ(dp_priv->output_reg);
1056
	intel_dp_aux_native_write_1(intel_encoder,
1057 1058 1059 1060
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1061
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1062
{
1063
	struct drm_device *dev = intel_encoder->base.dev;
1064
	struct drm_i915_private *dev_priv = dev->dev_private;
1065
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1066

1067
	DRM_DEBUG_KMS("\n");
1068

1069
	if (IS_eDP(intel_encoder)) {
1070 1071 1072 1073 1074 1075
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1076 1077 1078 1079 1080 1081
	DP &= ~DP_LINK_TRAIN_MASK;
	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
	POSTING_READ(dp_priv->output_reg);

	udelay(17000);

1082
	if (IS_eDP(intel_encoder))
1083
		DP |= DP_LINK_TRAIN_OFF;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1098
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1099
{
1100
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1101 1102
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1103
	if (!intel_encoder->enc.crtc)
1104 1105
		return;

1106 1107
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1108 1109 1110 1111
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1112
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1113 1114
}

1115
static enum drm_connector_status
1116
ironlake_dp_detect(struct drm_connector *connector)
1117
{
1118 1119
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1120 1121 1122
	enum drm_connector_status status;

	status = connector_status_disconnected;
1123
	if (intel_dp_aux_native_read(intel_encoder,
1124 1125 1126 1127 1128 1129 1130 1131 1132
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1142 1143
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1144
	struct drm_i915_private *dev_priv = dev->dev_private;
1145
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1146 1147 1148 1149 1150
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1151
	if (HAS_PCH_SPLIT(dev))
1152
		return ironlake_dp_detect(connector);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	temp = I915_READ(PORT_HOTPLUG_EN);

	I915_WRITE(PORT_HOTPLUG_EN,
	       temp |
	       DPB_HOTPLUG_INT_EN |
	       DPC_HOTPLUG_INT_EN |
	       DPD_HOTPLUG_INT_EN);

	POSTING_READ(PORT_HOTPLUG_EN);

	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1184
	if (intel_dp_aux_native_read(intel_encoder,
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1196 1197
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1198 1199
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;
1200 1201 1202 1203

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1204
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1205 1206 1207 1208
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1209
	if (IS_eDP(intel_encoder)) {
1210 1211 1212 1213 1214 1215 1216 1217
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1218 1219 1220 1221 1222
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
1223
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1224

1225 1226
	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1227 1228
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1229
	kfree(intel_encoder);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1262
void
1263
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1264
{
1265
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1266 1267

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1268
		intel_dp_check_link_status(intel_encoder);
1269
}
1270

1271 1272 1273 1274 1275
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1276
	struct intel_encoder *intel_encoder;
1277
	struct intel_dp_priv *dp_priv;
1278
	const char *name = NULL;
1279

1280
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1281
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1282
	if (!intel_encoder)
1283 1284
		return;

1285
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1286

1287
	connector = &intel_encoder->base;
1288 1289 1290 1291
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1292
	if (output_reg == DP_A)
1293
		intel_encoder->type = INTEL_OUTPUT_EDP;
1294
	else
1295
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1296

1297
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1298
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1299
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1300
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1301
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1302
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1303

1304 1305
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1306

1307
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1308 1309 1310
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1311
	dp_priv->intel_encoder = intel_encoder;
1312 1313
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1314
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1315
	intel_encoder->dev_priv = dp_priv;
1316

1317
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1318
			 DRM_MODE_ENCODER_TMDS);
1319
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1320

1321 1322
	drm_mode_connector_attach_encoder(&intel_encoder->base,
					  &intel_encoder->enc);
1323 1324 1325
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1326
	switch (output_reg) {
1327 1328 1329
		case DP_A:
			name = "DPDDC-A";
			break;
1330 1331
		case DP_B:
		case PCH_DP_B:
1332 1333
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1334 1335 1336 1337
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1338 1339
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1340 1341 1342 1343
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1344 1345
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1346 1347 1348 1349
			name = "DPDDC-D";
			break;
	}

1350
	intel_dp_i2c_init(intel_encoder, name);
1351

1352 1353
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (output_reg == DP_A) {
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1367 1368 1369 1370 1371 1372 1373 1374 1375
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}