Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
Models
提交
91fa3b97
M
Models
项目概览
MegEngine 天元
/
Models
通知
6
Star
3
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
Models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91fa3b97
编写于
6月 15, 2020
作者:
C
Chen Xinhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(quant): support calibration
上级
10cff870
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
251 addition
and
0 deletion
+251
-0
official/quantization/README.md
official/quantization/README.md
+5
-0
official/quantization/calibration.py
official/quantization/calibration.py
+246
-0
未找到文件。
official/quantization/README.md
浏览文件 @
91fa3b97
...
...
@@ -74,6 +74,11 @@ python3 train.py -a resnet18 -d /path/to/imagenet --mode normal
python3 finetune.py -a resnet18 -d /path/to/imagenet --checkpoint /path/to/resnet18.normal/checkpoint.pkl --mode qat
```
## Step 2. Calibration
```
python3 finetune.py -a resnet18 -d /path/to/imagenet --checkpoint /path/to/resnet18.normal/checkpoint.pkl --mode calibration
```
## Step 3. Test QAT model on ImageNet Testset
```
...
...
official/quantization/calibration.py
0 → 100644
浏览文件 @
91fa3b97
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
"""Finetune a pretrained fp32 with int8 quantization aware training(QAT)"""
import
argparse
import
collections
import
multiprocessing
as
mp
import
numbers
import
os
import
bisect
import
time
import
megengine
as
mge
import
megengine.data
as
data
import
megengine.data.transform
as
T
import
megengine.distributed
as
dist
import
megengine.functional
as
F
import
megengine.jit
as
jit
import
megengine.optimizer
as
optim
import
megengine.quantization
as
Q
import
config
import
models
logger
=
mge
.
get_logger
(
__name__
)
# from imagenet_nori_dataset import ImageNetNoriDataset
from
megengine.quantization.quantize
import
enable_observer
,
quantize
,
quantize_qat
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-a"
,
"--arch"
,
default
=
"resnet18"
,
type
=
str
)
parser
.
add_argument
(
"-d"
,
"--data"
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
"-s"
,
"--save"
,
default
=
"/data/models"
,
type
=
str
)
parser
.
add_argument
(
"-c"
,
"--checkpoint"
,
default
=
None
,
type
=
str
,
help
=
"pretrained model to finetune"
)
parser
.
add_argument
(
"-m"
,
"--mode"
,
default
=
"qat"
,
type
=
str
,
choices
=
[
"normal"
,
"qat"
,
"quantized"
,
"calibration"
],
help
=
"Quantization Mode
\n
"
"normal: no quantization, using float32
\n
"
"qat: quantization aware training, simulate int8
\n
"
"calibration: calibration
\n
"
"quantized: convert mode to int8 quantized, inference only"
)
parser
.
add_argument
(
"-n"
,
"--ngpus"
,
default
=
None
,
type
=
int
)
parser
.
add_argument
(
"-w"
,
"--workers"
,
default
=
4
,
type
=
int
)
parser
.
add_argument
(
"--report-freq"
,
default
=
50
,
type
=
int
)
args
=
parser
.
parse_args
()
world_size
=
mge
.
get_device_count
(
"gpu"
)
if
args
.
ngpus
is
None
else
args
.
ngpus
if
world_size
>
1
:
# start distributed training, dispatch sub-processes
mp
.
set_start_method
(
"spawn"
)
processes
=
[]
for
rank
in
range
(
world_size
):
p
=
mp
.
Process
(
target
=
worker
,
args
=
(
rank
,
world_size
,
args
))
p
.
start
()
processes
.
append
(
p
)
for
p
in
processes
:
p
.
join
()
else
:
worker
(
0
,
1
,
args
)
def
get_parameters
(
model
,
cfg
):
if
isinstance
(
cfg
.
WEIGHT_DECAY
,
numbers
.
Number
):
return
{
"params"
:
model
.
parameters
(
requires_grad
=
True
),
"weight_decay"
:
cfg
.
WEIGHT_DECAY
}
groups
=
collections
.
defaultdict
(
list
)
# weight_decay -> List[param]
for
pname
,
p
in
model
.
named_parameters
(
requires_grad
=
True
):
wd
=
cfg
.
WEIGHT_DECAY
(
pname
,
p
)
groups
[
wd
].
append
(
p
)
groups
=
[
{
"params"
:
params
,
"weight_decay"
:
wd
}
for
wd
,
params
in
groups
.
items
()
]
# List[{param, weight_decay}]
return
groups
def
worker
(
rank
,
world_size
,
args
):
# pylint: disable=too-many-statements
if
world_size
>
1
:
# Initialize distributed process group
logger
.
info
(
"init distributed process group {} / {}"
.
format
(
rank
,
world_size
))
dist
.
init_process_group
(
master_ip
=
"localhost"
,
master_port
=
23456
,
world_size
=
world_size
,
rank
=
rank
,
dev
=
rank
,
)
save_dir
=
os
.
path
.
join
(
args
.
save
,
args
.
arch
+
"."
+
args
.
mode
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
,
exist_ok
=
True
)
mge
.
set_log_file
(
os
.
path
.
join
(
save_dir
,
"log.txt"
))
model
=
models
.
__dict__
[
args
.
arch
]()
cfg
=
config
.
get_finetune_config
(
args
.
arch
)
cfg
.
LEARNING_RATE
*=
world_size
# scale learning rate in distributed training
total_batch_size
=
cfg
.
BATCH_SIZE
*
world_size
steps_per_epoch
=
1280000
//
total_batch_size
total_steps
=
steps_per_epoch
*
cfg
.
EPOCHS
# load calibration model
assert
args
.
checkpoint
logger
.
info
(
"Load pretrained weights from %s"
,
args
.
checkpoint
)
ckpt
=
mge
.
load
(
args
.
checkpoint
)
ckpt
=
ckpt
[
"state_dict"
]
if
"state_dict"
in
ckpt
else
ckpt
model
.
load_state_dict
(
ckpt
,
strict
=
False
)
# Build valid datasets
valid_dataset
=
data
.
dataset
.
ImageNet
(
args
.
data
,
train
=
False
)
# valid_dataset = ImageNetNoriDataset(args.data)
valid_sampler
=
data
.
SequentialSampler
(
valid_dataset
,
batch_size
=
100
,
drop_last
=
False
)
valid_queue
=
data
.
DataLoader
(
valid_dataset
,
sampler
=
valid_sampler
,
transform
=
T
.
Compose
(
[
T
.
Resize
(
256
),
T
.
CenterCrop
(
224
),
T
.
Normalize
(
mean
=
128
),
T
.
ToMode
(
"CHW"
),
]
),
num_workers
=
args
.
workers
,
)
# calibration
model
.
fc
.
disable_quantize
()
model
=
quantize_qat
(
model
,
qconfig
=
Q
.
calibration_qconfig
)
# calculate scale
@
jit
.
trace
(
symbolic
=
True
)
def
calculate_scale
(
image
,
label
):
model
.
eval
()
enable_observer
(
model
)
logits
=
model
(
image
)
loss
=
F
.
cross_entropy_with_softmax
(
logits
,
label
,
label_smooth
=
0.1
)
acc1
,
acc5
=
F
.
accuracy
(
logits
,
label
,
(
1
,
5
))
if
dist
.
is_distributed
():
# all_reduce_mean
loss
=
dist
.
all_reduce_sum
(
loss
,
"valid_loss"
)
/
dist
.
get_world_size
()
acc1
=
dist
.
all_reduce_sum
(
acc1
,
"valid_acc1"
)
/
dist
.
get_world_size
()
acc5
=
dist
.
all_reduce_sum
(
acc5
,
"valid_acc5"
)
/
dist
.
get_world_size
()
return
loss
,
acc1
,
acc5
# model.fc.disable_quantize()
infer
(
calculate_scale
,
valid_queue
,
args
)
# quantized
model
=
quantize
(
model
)
# eval quantized model
@
jit
.
trace
(
symbolic
=
True
)
def
eval_func
(
image
,
label
):
model
.
eval
()
logits
=
model
(
image
)
loss
=
F
.
cross_entropy_with_softmax
(
logits
,
label
,
label_smooth
=
0.1
)
acc1
,
acc5
=
F
.
accuracy
(
logits
,
label
,
(
1
,
5
))
if
dist
.
is_distributed
():
# all_reduce_mean
loss
=
dist
.
all_reduce_sum
(
loss
,
"valid_loss"
)
/
dist
.
get_world_size
()
acc1
=
dist
.
all_reduce_sum
(
acc1
,
"valid_acc1"
)
/
dist
.
get_world_size
()
acc5
=
dist
.
all_reduce_sum
(
acc5
,
"valid_acc5"
)
/
dist
.
get_world_size
()
return
loss
,
acc1
,
acc5
_
,
valid_acc
,
valid_acc5
=
infer
(
eval_func
,
valid_queue
,
args
)
logger
.
info
(
"TEST %f, %f"
,
valid_acc
,
valid_acc5
)
# save quantized model
mge
.
save
(
{
"step"
:
-
1
,
"state_dict"
:
model
.
state_dict
()},
os
.
path
.
join
(
save_dir
,
"checkpoint-calibration.pkl"
)
)
logger
.
info
(
"save in {}"
.
format
(
os
.
path
.
join
(
save_dir
,
"checkpoint-calibration.pkl"
)))
def
infer
(
model
,
data_queue
,
args
):
objs
=
AverageMeter
(
"Loss"
)
top1
=
AverageMeter
(
"Acc@1"
)
top5
=
AverageMeter
(
"Acc@5"
)
total_time
=
AverageMeter
(
"Time"
)
t
=
time
.
time
()
for
step
,
(
image
,
label
)
in
enumerate
(
data_queue
):
n
=
image
.
shape
[
0
]
image
=
image
.
astype
(
"float32"
)
# convert np.uint8 to float32
label
=
label
.
astype
(
"int32"
)
loss
,
acc1
,
acc5
=
model
(
image
,
label
)
objs
.
update
(
loss
.
numpy
()[
0
],
n
)
top1
.
update
(
100
*
acc1
.
numpy
()[
0
],
n
)
top5
.
update
(
100
*
acc5
.
numpy
()[
0
],
n
)
total_time
.
update
(
time
.
time
()
-
t
)
t
=
time
.
time
()
if
step
%
args
.
report_freq
==
0
and
dist
.
get_rank
()
==
0
:
logger
.
info
(
"Step %d, %s %s %s %s"
,
step
,
objs
,
top1
,
top5
,
total_time
)
# break
if
step
==
args
.
report_freq
:
break
return
objs
.
avg
,
top1
.
avg
,
top5
.
avg
class
AverageMeter
:
"""Computes and stores the average and current value"""
def
__init__
(
self
,
name
,
fmt
=
":.3f"
):
self
.
name
=
name
self
.
fmt
=
fmt
self
.
reset
()
def
reset
(
self
):
self
.
val
=
0
self
.
avg
=
0
self
.
sum
=
0
self
.
count
=
0
def
update
(
self
,
val
,
n
=
1
):
self
.
val
=
val
self
.
sum
+=
val
*
n
self
.
count
+=
n
self
.
avg
=
self
.
sum
/
self
.
count
def
__str__
(
self
):
fmtstr
=
"{name} {val"
+
self
.
fmt
+
"} ({avg"
+
self
.
fmt
+
"})"
return
fmtstr
.
format
(
**
self
.
__dict__
)
if
__name__
==
"__main__"
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录