未验证 提交 475b6b9f 编写于 作者: Y Yizhuang Zhou 提交者: GitHub

feat(quantization): add pretrained weights and update accuracy of quantized models (#30)

上级 4de9258c
......@@ -6,13 +6,26 @@
| Model | top1 acc (float32) | FPS* (float32) | top1 acc (int8) | FPS* (int8) |
| --- | --- | --- | --- | --- |
| ResNet18 | 69.824 | 10.5 | 69.754 | 16.3 |
| ShufflenetV1 (1.5x) | 71.954 | 17.3 | | 25.3 |
| MobilenetV2 | 72.820 | 13.1 | | 17.4 |
| ShufflenetV1 (1.5x) | 71.954 | 17.3 | 70.656 | 25.3 |
| MobilenetV2 | 72.820 | 13.1 | 71.378 | 17.4 |
**: FPS is measured on Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, single 224x224 image*
*We finetune mobile models with QAT for 30 epochs, training longer may yield better accuracy*
量化模型使用时,统一读取0-255的uint8图片,减去128的均值,转化为int8,输入网络。
#### (Optional) Download Pretrained Models
```
wget https://data.megengine.org.cn/models/weights/mobilenet_v2_normal_72820.pkl
wget https://data.megengine.org.cn/models/weights/mobilenet_v2_qat_71378.pkl
wget https://data.megengine.org.cn/models/weights/resnet18_normal_69824.pkl
wget https://data.megengine.org.cn/models/weights/resnet18_qat_69754.pkl
wget https://data.megengine.org.cn/models/weights/shufflenet_v1_x1_5_g3_normal_71954.pkl
wget https://data.megengine.org.cn/models/weights/shufflenet_v1_x1_5_g3_qat_70656.pkl
```
## Quantization Aware Training (QAT)
```python
......
......@@ -48,8 +48,8 @@ def get_config(arch: str):
class ShufflenetFinetuneConfig(ShufflenetConfig):
BATCH_SIZE = 128 // 2
LEARNING_RATE = 0.03125
EPOCHS = 120
LEARNING_RATE = 0.003125 // 2
EPOCHS = 30
class ResnetFinetuneConfig(ResnetConfig):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册