fpn.py 6.5 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
# -*- coding: utf-8 -*-
# Copyright 2019 - present, Facebook, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ---------------------------------------------------------------------
import math
from typing import List

import megengine.functional as F
import megengine.module as M

from official.vision.detection import layers


class FPN(M.Module):
    """
    This module implements Feature Pyramid Network.
    It creates pyramid features built on top of some input feature maps which
    are produced by the backbone networks like ResNet.
    """

    def __init__(
        self,
        bottom_up: M.Module,
        in_features: List[str],
        out_channels: int = 256,
        norm: str = "",
        top_block: M.Module = None,
    ):
        """
        Args:
            bottom_up (M.Module): module representing the bottom up sub-network.
                it generates multi-scale feature maps which formatted as a
                dict like {'res3': res3_feature, 'res4': res4_feature}
            in_features (list[str]): list of input feature maps keys coming
                from the `bottom_up` which will be used in FPN.
                e.g. ['res3', 'res4', 'res5']
            out_channels (int): number of channels used in the output
                feature maps.
            norm (str): the normalization type.
            top_block (nn.Module or None): the module build upon FPN layers.
        """
        super(FPN, self).__init__()

        in_strides = [8, 16, 32]
        in_channels = [512, 1024, 2048]

        use_bias = norm == ""
        self.lateral_convs = list()
        self.output_convs = list()

        for idx, in_channels in enumerate(in_channels):
            lateral_norm = layers.get_norm(norm, out_channels)
            output_norm = layers.get_norm(norm, out_channels)

            lateral_conv = layers.Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                bias=use_bias,
                norm=lateral_norm,
            )
            output_conv = layers.Conv2d(
                out_channels,
                out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=use_bias,
                norm=output_norm,
            )
            M.init.msra_normal_(lateral_conv.weight, mode="fan_in")
            M.init.msra_normal_(output_conv.weight, mode="fan_in")

            if use_bias:
                M.init.fill_(lateral_conv.bias, 0)
                M.init.fill_(output_conv.bias, 0)

            stage = int(math.log2(in_strides[idx]))

            setattr(self, "fpn_lateral{}".format(stage), lateral_conv)
            setattr(self, "fpn_output{}".format(stage), output_conv)
            self.lateral_convs.insert(0, lateral_conv)
            self.output_convs.insert(0, output_conv)

        self.top_block = top_block
        self.in_features = in_features
        self.bottom_up = bottom_up

        # follow the common practices, FPN features are named to "p<stage>",
        # like ["p2", "p3", ..., "p6"]
        self._out_feature_strides = {
            "p{}".format(int(math.log2(s))): s for s in in_strides
        }

        # top block output feature maps.
        if self.top_block is not None:
            for s in range(stage, stage + self.top_block.num_levels):
                self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1)

        self._out_features = list(self._out_feature_strides.keys())
        self._out_feature_channels = {k: out_channels for k in self._out_features}

    def forward(self, x):
        bottom_up_features = self.bottom_up.extract_features(x)
        x = [bottom_up_features[f] for f in self.in_features[::-1]]

        results = []
        prev_features = self.lateral_convs[0](x[0])
        results.append(self.output_convs[0](prev_features))

        for features, lateral_conv, output_conv in zip(
            x[1:], self.lateral_convs[1:], self.output_convs[1:]
        ):
            top_down_features = F.interpolate(
                prev_features, scale_factor=2, mode="BILINEAR"
            )
            lateral_features = lateral_conv(features)
            prev_features = lateral_features + top_down_features
            results.insert(0, output_conv(prev_features))

        if self.top_block is not None:
            top_block_in_feature = bottom_up_features.get(
                self.top_block.in_feature, None
            )
            if top_block_in_feature is None:
                top_block_in_feature = results[
                    self._out_features.index(self.top_block.in_feature)
                ]
            results.extend(self.top_block(top_block_in_feature, results[-1]))

        return dict(zip(self._out_features, results))

    def output_shape(self):
        return {
            name: layers.ShapeSpec(channels=self._out_feature_channels[name],)
            for name in self._out_features
        }


class LastLevelP6P7(M.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7 from
    C5 feature.
    """

    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        self.num_levels = 2
        self.in_feature = "res5"
        self.p6 = M.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = M.Conv2d(out_channels, out_channels, 3, 2, 1)
        self.use_P5 = in_channels == out_channels

    def forward(self, c5, p5=None):
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        return [p6, p7]