model.py 12.4 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
# BSD 3-Clause License

# Copyright (c) Soumith Chintala 2016,
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.

# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.

# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math

import megengine.functional as F
import megengine.hub as hub
import megengine.module as M


class BasicBlock(M.Module):
    expansion = 1

    def __init__(
        self,
        in_channels,
        channels,
        stride=1,
        groups=1,
        base_width=64,
        dilation=1,
        norm=M.BatchNorm2d,
    ):
63
        super().__init__()
M
MegEngine Team 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        self.conv1 = M.Conv2d(
            in_channels, channels, 3, stride, padding=dilation, bias=False
        )
        self.bn1 = norm(channels)
        self.conv2 = M.Conv2d(channels, channels, 3, 1, padding=1, bias=False)
        self.bn2 = norm(channels)
        self.downsample = (
            M.Identity()
            if in_channels == channels and stride == 1
            else M.Sequential(
                M.Conv2d(in_channels, channels, 1, stride, bias=False), norm(channels),
            )
        )

    def forward(self, x):
        identity = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        identity = self.downsample(identity)
        x += identity
        x = F.relu(x)
        return x


class Bottleneck(M.Module):
    expansion = 4

    def __init__(
        self,
        in_channels,
        channels,
        stride=1,
        groups=1,
        base_width=64,
        dilation=1,
        norm=M.BatchNorm2d,
    ):
108
        super().__init__()
M
MegEngine Team 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        width = int(channels * (base_width / 64.0)) * groups
        self.conv1 = M.Conv2d(in_channels, width, 1, 1, bias=False)
        self.bn1 = norm(width)
        self.conv2 = M.Conv2d(
            width,
            width,
            3,
            stride,
            padding=dilation,
            groups=groups,
            dilation=dilation,
            bias=False,
        )
        self.bn2 = norm(width)
        self.conv3 = M.Conv2d(width, channels * self.expansion, 1, 1, bias=False)
        self.bn3 = norm(channels * self.expansion)
        self.downsample = (
            M.Identity()
            if in_channels == channels * self.expansion and stride == 1
            else M.Sequential(
                M.Conv2d(in_channels, channels * self.expansion, 1, stride, bias=False),
                norm(channels * self.expansion),
            )
        )

    def forward(self, x):
        identity = x

        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = F.relu(x)

        x = self.conv3(x)
        x = self.bn3(x)

        identity = self.downsample(identity)

        x += identity
        x = F.relu(x)

        return x


class ResNet(M.Module):
    def __init__(
        self,
        block,
        layers,
        num_classes=1000,
        zero_init_residual=False,
        groups=1,
        width_per_group=64,
        replace_stride_with_dilation=None,
        norm=M.BatchNorm2d,
    ):
168
        super().__init__()
M
MegEngine Team 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        self.in_channels = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                "or a 3-element tuple, got {}".format(replace_stride_with_dilation)
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = M.Conv2d(
            3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = norm(self.in_channels)
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], norm=norm)
        self.layer2 = self._make_layer(
            block,
            128,
            layers[1],
            stride=2,
            dilate=replace_stride_with_dilation[0],
            norm=norm,
        )
        self.layer3 = self._make_layer(
            block,
            256,
            layers[2],
            stride=2,
            dilate=replace_stride_with_dilation[1],
            norm=norm,
        )
        self.layer4 = self._make_layer(
            block,
            512,
            layers[3],
            stride=2,
            dilate=replace_stride_with_dilation[2],
            norm=norm,
        )
        self.fc = M.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, M.Conv2d):
                M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
            elif isinstance(m, M.BatchNorm2d):
                M.init.ones_(m.weight)
                M.init.zeros_(m.bias)
            elif isinstance(m, M.Linear):
                M.init.msra_uniform_(m.weight, a=math.sqrt(5))
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    M.init.zeros_(m.bn3.weight)
                elif isinstance(m, BasicBlock):
                    M.init.zeros_(m.bn2.weight)

    def _make_layer(
        self, block, channels, blocks, stride=1, dilate=False, norm=M.BatchNorm2d
    ):
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1

        layers = []
        layers.append(
            block(
                self.in_channels,
                channels,
                stride,
                groups=self.groups,
                base_width=self.base_width,
                dilation=previous_dilation,
                norm=norm,
            )
        )
        self.in_channels = channels * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.in_channels,
                    channels,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm=norm,
                )
            )

        return M.Sequential(*layers)

    def extract_features(self, x):
        outputs = {}
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.maxpool(x)
        outputs["stem"] = x

        x = self.layer1(x)
        outputs["res2"] = x
        x = self.layer2(x)
        outputs["res3"] = x
        x = self.layer3(x)
        outputs["res4"] = x
        x = self.layer4(x)
        outputs["res5"] = x
        return outputs

    def forward(self, x):
        x = self.extract_features(x)["res5"]

        x = F.avg_pool2d(x, 7)
        x = F.flatten(x, 1)
        x = self.fc(x)

        return x


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnet18_naiveaug_70312_78a63ca6.pkl"
)
def resnet18(**kwargs):
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    """
    return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnet34_naiveaug_73960_fd9d869d.pkl"
)
def resnet34(**kwargs):
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    """
    return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnet50_fbaug_76254_4e14b7d1.pkl"
)
def resnet50(**kwargs):
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    """
    return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnet101_fbaug_77944_b7932921.pkl"
)
def resnet101(**kwargs):
    r"""ResNet-101 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    """
    return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)


344 345 346
@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnet152_fbaug_78582_7551aff3.pkl"
)
M
MegEngine Team 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
def resnet152(**kwargs):
    r"""ResNet-152 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    """
    return ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnext50_32x4d_fbaug_77592_c4b04e5e.pkl"
)
def resnext50_32x4d(**kwargs):
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 4
    return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)


370 371 372
@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/resnext101_32x8d_fbaug_79520_80efb344.pkl"
)
M
MegEngine Team 已提交
373 374 375 376 377 378 379 380 381 382 383
def resnext101_32x8d(**kwargs):
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 8
    return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)