train.py 4.1 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

import megengine as mge
import megengine.functional as F
import megengine.optimizer as optim
from megengine.jit import trace
from tqdm import tqdm

from model import BertForSequenceClassification, create_hub_bert
from mrpc_dataset import MRPCDataset
C
Chen xinhao 已提交
18 19 20
# pylint: disable=import-outside-toplevel
import config_args
args = config_args.get_args()
M
MegEngine Team 已提交
21 22 23 24
logger = mge.get_logger(__name__)


@trace(symbolic=True)
C
Chen xinhao 已提交
25
def net_eval(input_ids, segment_ids, input_mask, label_ids, net=None):
M
MegEngine Team 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    net.eval()
    results = net(input_ids, segment_ids, input_mask, label_ids)
    logits, loss = results
    return loss, logits, label_ids


@trace(symbolic=True)
def net_train(input_ids, segment_ids, input_mask, label_ids, opt=None, net=None):
    net.train()
    results = net(input_ids, segment_ids, input_mask, label_ids)
    logits, loss = results
    opt.backward(loss)
    return loss, logits, label_ids


def accuracy(out, labels):
    outputs = F.argmax(out, axis=1)
    return F.sum(outputs == labels)


def eval(dataloader, net):
    logger.info("***** Running evaluation *****")
    logger.info("batch size = %d", args.eval_batch_size)

    sum_loss, sum_accuracy, total_steps, total_examples = 0, 0, 0, 0

C
Chen xinhao 已提交
52
    for _, batch in enumerate(tqdm(dataloader, desc="Iteration")):
M
MegEngine Team 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        input_ids, input_mask, segment_ids, label_ids = tuple(
            mge.tensor(t) for t in batch
        )
        batch_size = input_ids.shape[0]
        if batch_size != args.eval_batch_size:
            break
        loss, logits, label_ids = net_eval(
            input_ids, segment_ids, input_mask, label_ids, net=net
        )
        sum_loss += loss.mean().item()
        sum_accuracy += accuracy(logits, label_ids)
        total_examples += batch_size
        total_steps += 1

    result = {
        "eval_loss": sum_loss / total_steps,
        "eval_accuracy": sum_accuracy / total_examples,
    }

    logger.info("***** Eval results *****")
    for key in sorted(result.keys()):
        logger.info("%s = %s", key, str(result[key]))


def train(dataloader, net, opt):
    logger.info("***** Running training *****")
    logger.info("batch size = %d", args.train_batch_size)
    sum_loss, sum_accuracy, total_steps, total_examples = 0, 0, 0, 0

C
Chen xinhao 已提交
82
    for _, batch in enumerate(tqdm(dataloader, desc="Iteration")):
M
MegEngine Team 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        input_ids, input_mask, segment_ids, label_ids = tuple(
            mge.tensor(t) for t in batch
        )
        batch_size = input_ids.shape[0]
        opt.zero_grad()
        loss, logits, label_ids = net_train(
            input_ids, segment_ids, input_mask, label_ids, opt=opt, net=net
        )
        optimizer.step()
        sum_loss += loss.mean().item()
        sum_accuracy += accuracy(logits, label_ids)
        total_examples += batch_size
        total_steps += 1

    result = {
        "train_loss": sum_loss / total_steps,
        "train_accuracy": sum_accuracy / total_examples,
    }

    logger.info("***** Train results *****")
    for key in sorted(result.keys()):
        logger.info("%s = %s", key, str(result[key]))


if __name__ == "__main__":
    bert, config, vocab_file = create_hub_bert(args.pretrained_bert, pretrained=True)
    args.vocab_file = vocab_file
    model = BertForSequenceClassification(config, num_labels=2, bert=bert)
    mrpc_dataset = MRPCDataset(args)
    optimizer = optim.Adam(model.parameters(requires_grad=True), lr=args.learning_rate,)
    mrpc_dataset = MRPCDataset(args)
    train_dataloader, train_size = mrpc_dataset.get_train_dataloader()
    eval_dataloader, eval_size = mrpc_dataset.get_eval_dataloader()
    for epoch in range(args.num_train_epochs):
        logger.info("***** Epoch {} *****".format(epoch + 1))
        train(train_dataloader, model, optimizer)
        mge.save(model.state_dict(), args.save_model_path)
        eval(eval_dataloader, model)