model.py 31.1 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# -*- coding: utf-8 -*-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# ---------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights reserved.
# ----------------------------------------------------------------------

"""Megengine BERT model."""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import copy
import json
import math
import os
import urllib
import urllib.request
from io import open

import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import numpy as np
from megengine import Parameter
from megengine.functional import cross_entropy_with_softmax
from megengine.module import Dropout, Embedding, Linear, Module, Sequential
from megengine.module.activation import Softmax


def transpose(inp, a, b):
C
Chen xinhao 已提交
41
    cur_shape = list(range(0, len(inp.shape)))
M
MegEngine Team 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    cur_shape[a], cur_shape[b] = cur_shape[b], cur_shape[a]
    return inp.dimshuffle(*cur_shape)


def matmul(a, b, transpose_b=None):
    dim = len(b.shape)

    if transpose_b:
        b = transpose(b, dim - 1, dim - 2)

    if dim > 3:
        a_shape = list(a.shape)
        b_shape = list(b.shape)
        reshape_batch_size = 1
        for i in a_shape[0 : dim - 2]:
            reshape_batch_size *= i
        a = a.reshape(*([reshape_batch_size] + a_shape[dim - 2 : dim]))
        b = b.reshape(*([reshape_batch_size] + b_shape[dim - 2 : dim]))
        c = F.batched_matrix_mul(a, b)
        c = c.reshape(*(a_shape[0 : dim - 1] + b_shape[dim - 1 : dim]))
        return c
    elif dim == 3:
        return F.batched_matrix_mul(a, b)
    else:
        return F.matrix_mul(a, b)

def zeros_like(inp):
    return mge.zeros(inp.shape, dtype=inp.dtype)

def ones_like(inp):
    return mge.ones(inp.shape, dtype=inp.dtype)

def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        x * 0.5 * (1.0 + F.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * (x **  3)))))
        Also see https://arxiv.org/abs/1606.08415
    """
    return x * 0.5 * (1.0 + F.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * (x ** 3)))))


ACT2FN = {"gelu": gelu, "relu": F.relu}


C
Chen xinhao 已提交
86
class BertConfig:
M
MegEngine Team 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    """Configuration class to store the configuration of a `BertModel`.
    """

    def __init__(
        self,
        vocab_size_or_config_json_file,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
    ):
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string())


class BertLayerNorm(Module):
    """Construct a layernorm module in the TF style (epsilon inside the square root).
    """

    def __init__(self, hidden_size, eps=1e-12):
        super(BertLayerNorm, self).__init__()
        self.weight = Parameter(np.ones(hidden_size).astype(np.float32))
        self.bias = Parameter(np.zeros(hidden_size).astype(np.float32))
        self.variance_epsilon = eps

    def forward(self, x):
        u = F.mean(x, len(x.shape) - 1, True)
        s = F.mean((x - u) ** 2, len(x.shape) - 1, True)
        x = (x - u) / ((s + self.variance_epsilon) ** 0.5)
        return self.weight * x + self.bias


class BertEmbeddings(Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """

    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        self.word_embeddings = Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = Embedding(
            config.max_position_embeddings, config.hidden_size
        )
        self.token_type_embeddings = Embedding(
            config.type_vocab_size, config.hidden_size
        )

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.shape[1]

        if token_type_ids is None:
            token_type_ids = zeros_like(input_ids)

        position_ids = F.linspace(0, seq_length - 1, seq_length).astype(np.int32)
        position_ids = F.add_axis(position_ids, 0).broadcast(*input_ids.shape)
        words_embeddings = self.word_embeddings(input_ids)

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.dropout = Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.shape[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.reshape(*new_x_shape)
        return x.dimshuffle(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = matmul(query_layer, transpose(key_layer, -1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = Softmax(len(attention_scores.shape) - 1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = matmul(attention_probs, value_layer)
        context_layer = context_layer.dimshuffle(0, 2, 1, 3)
        new_context_layer_shape = context_layer.shape[:-2] + (self.all_head_size,)
        context_layer = context_layer.reshape(*new_context_layer_shape)
        return context_layer


class BertSelfOutput(Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output


class BertIntermediate(Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(Module):
    def __init__(self, config):
        super(BertLayer, self).__init__()
        self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class BertEncoder(Module):
    def __init__(self, config):
        super(BertEncoder, self).__init__()
        self.layer = Sequential(
            *[BertLayer(config) for _ in range(config.num_hidden_layers)]
        )
        # self.layer = ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers


class BertPooler(Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = Linear(config.hidden_size, config.hidden_size)
        self.activation = F.tanh

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertModel(Module):
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """

    def __init__(self, config):
C
Chen xinhao 已提交
443
        super().__init__()
M
MegEngine Team 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)

    def forward(
        self,
        input_ids,
        token_type_ids=None,
        attention_mask=None,
        output_all_encoded_layers=True,
    ):
        if attention_mask is None:
            attention_mask = ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = zeros_like(input_ids)
        # print('input_ids', input_ids.sum())
        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        # print('attention_mask', attention_mask.sum())
        extended_attention_mask = F.add_axis(attention_mask, (1, 2))

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.astype(
            next(self.parameters()).dtype
        )  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)

        encoded_layers = self.encoder(
            embedding_output,
            extended_attention_mask,
            output_all_encoded_layers=output_all_encoded_layers,
        )

        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
        return encoded_layers, pooled_output


class BertForSequenceClassification(Module):
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """

    def __init__(self, config, num_labels, bert=None):
C
Chen xinhao 已提交
540
        super().__init__()
M
MegEngine Team 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        if bert is None:
            self.bert = BertModel(config)
        else:
            self.bert = bert
        self.num_labels = num_labels
        self.dropout = Dropout(config.hidden_dropout_prob)
        self.classifier = Linear(config.hidden_size, num_labels)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
        _, pooled_output = self.bert(
            input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False
        )
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss = cross_entropy_with_softmax(
                logits.reshape(-1, self.num_labels), labels.reshape(-1)
            )
            return logits, loss
        else:
            return logits, None


DATA_URL = "https://data.megengine.org.cn/models/weights/bert"
CONFIG_NAME = "bert_config.json"
VOCAB_NAME = "vocab.txt"
MODEL_NAME = {
    "wwm_cased_L-24_H-1024_A-16": "wwm_cased_L_24_H_1024_A_16",
    "wwm_uncased_L-24_H-1024_A-16": "wwm_uncased_L_24_H_1024_A_16",
    "cased_L-12_H-768_A-12": "cased_L_12_H_768_A_12",
    "cased_L-24_H-1024_A-16": "cased_L_24_H_1024_A_16",
    "uncased_L-12_H-768_A-12": "uncased_L_12_H_768_A_12",
    "uncased_L-24_H-1024_A-16": "uncased_L_24_H_1024_A_16",
    "chinese_L-12_H-768_A-12": "chinese_L_12_H_768_A_12",
    "multi_cased_L-12_H-768_A-12": "multi_cased_L_12_H_768_A_12",
}


def download_file(url, filename):
C
Chen xinhao 已提交
581 582
    # urllib.URLopener().retrieve(url, filename)
    urllib.request.urlretrieve(url, filename)
M
MegEngine Team 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801


def create_hub_bert(model_name, pretrained):
    assert model_name in MODEL_NAME, "{} not in the valid models {}".format(
        model_name, MODEL_NAME
    )
    data_dir = "./{}".format(model_name)
    if not os.path.exists(data_dir):
        os.makedirs(data_dir)

    vocab_url = "{}/{}/{}".format(DATA_URL, model_name, VOCAB_NAME)
    config_url = "{}/{}/{}".format(DATA_URL, model_name, CONFIG_NAME)

    vocab_file = "./{}/{}".format(model_name, VOCAB_NAME)
    config_file = "./{}/{}".format(model_name, CONFIG_NAME)

    download_file(vocab_url, vocab_file)
    download_file(config_url, config_file)

    config = BertConfig(config_file)

    model = hub.load("megengine/models", MODEL_NAME[model_name], pretrained=pretrained)

    return model, config, vocab_file


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl"
)
def uncased_L_12_H_768_A_12():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 768,
        "initializer_range": 0.02,
        "intermediate_size": 3072,
        "max_position_embeddings": 512,
        "num_attention_heads": 12,
        "num_hidden_layers": 12,
        "type_vocab_size": 2,
        "vocab_size": 30522,
    }
    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl"
)
def cased_L_12_H_768_A_12():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 768,
        "initializer_range": 0.02,
        "intermediate_size": 3072,
        "max_position_embeddings": 512,
        "num_attention_heads": 12,
        "num_hidden_layers": 12,
        "type_vocab_size": 2,
        "vocab_size": 28996,
    }
    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl"
)
def uncased_L_24_H_1024_A_16():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 1024,
        "initializer_range": 0.02,
        "intermediate_size": 4096,
        "max_position_embeddings": 512,
        "num_attention_heads": 16,
        "num_hidden_layers": 24,
        "type_vocab_size": 2,
        "vocab_size": 30522,
    }

    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl"
)
def cased_L_24_H_1024_A_16():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "directionality": "bidi",
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 1024,
        "initializer_range": 0.02,
        "intermediate_size": 4096,
        "max_position_embeddings": 512,
        "num_attention_heads": 16,
        "num_hidden_layers": 24,
        "pooler_fc_size": 768,
        "pooler_num_attention_heads": 12,
        "pooler_num_fc_layers": 3,
        "pooler_size_per_head": 128,
        "pooler_type": "first_token_transform",
        "type_vocab_size": 2,
        "vocab_size": 28996,
    }

    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl"
)
def chinese_L_12_H_768_A_12():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "directionality": "bidi",
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 768,
        "initializer_range": 0.02,
        "intermediate_size": 3072,
        "max_position_embeddings": 512,
        "num_attention_heads": 12,
        "num_hidden_layers": 12,
        "pooler_fc_size": 768,
        "pooler_num_attention_heads": 12,
        "pooler_num_fc_layers": 3,
        "pooler_size_per_head": 128,
        "pooler_type": "first_token_transform",
        "type_vocab_size": 2,
        "vocab_size": 21128,
    }
    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl"
)
def multi_cased_L_12_H_768_A_12():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "directionality": "bidi",
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 768,
        "initializer_range": 0.02,
        "intermediate_size": 3072,
        "max_position_embeddings": 512,
        "num_attention_heads": 12,
        "num_hidden_layers": 12,
        "pooler_fc_size": 768,
        "pooler_num_attention_heads": 12,
        "pooler_num_fc_layers": 3,
        "pooler_size_per_head": 128,
        "pooler_type": "first_token_transform",
        "type_vocab_size": 2,
        "vocab_size": 119547,
    }

    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl"
)
def wwm_uncased_L_24_H_1024_A_16():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 1024,
        "initializer_range": 0.02,
        "intermediate_size": 4096,
        "max_position_embeddings": 512,
        "num_attention_heads": 16,
        "num_hidden_layers": 24,
        "type_vocab_size": 2,
        "vocab_size": 30522,
    }
    config = BertConfig.from_dict(config_dict)
    return BertModel(config)


@hub.pretrained(
    "https://data.megengine.org.cn/models/weights/bert/wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl"
)
def wwm_cased_L_24_H_1024_A_16():
    config_dict = {
        "attention_probs_dropout_prob": 0.1,
        "directionality": "bidi",
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 1024,
        "initializer_range": 0.02,
        "intermediate_size": 4096,
        "max_position_embeddings": 512,
        "num_attention_heads": 16,
        "num_hidden_layers": 24,
        "pooler_fc_size": 768,
        "pooler_num_attention_heads": 12,
        "pooler_num_fc_layers": 3,
        "pooler_size_per_head": 128,
        "pooler_type": "first_token_transform",
        "type_vocab_size": 2,
        "vocab_size": 28996,
    }
    config = BertConfig.from_dict(config_dict)
    return BertModel(config)