functional.py 1.8 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np

11 12
import megengine as mge
import megengine.functional as F
13
from megengine.core import Tensor
M
MegEngine Team 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


def get_padded_tensor(
    array: Tensor, multiple_number: int = 32, pad_value: float = 0
) -> Tensor:
    """ pad the nd-array to multiple stride of th e

    Args:
        array (Tensor):
            the tensor with the shape of [batch, channel, height, width]
        multiple_number (int):
            make the height and width can be divided by multiple_number
        pad_value (int): the value to be padded

    Returns:
        padded_array (Tensor)
    """
    batch, chl, t_height, t_width = array.shape
    padded_height = (
        (t_height + multiple_number - 1) // multiple_number * multiple_number
    )
    padded_width = (t_width + multiple_number - 1) // multiple_number * multiple_number

    padded_array = (
        mge.ones(
            F.concat([batch, chl, padded_height, padded_width], axis=0),
            dtype=np.float32,
        )
        * pad_value
    )

    ndim = array.ndim
    if ndim == 4:
        padded_array = padded_array.set_subtensor(array)[:, :, :t_height, :t_width]
    elif ndim == 3:
        padded_array = padded_array.set_subtensor(array)[:, :t_height, :t_width]
    else:
        raise Exception("Not supported tensor dim: %d" % ndim)
    return padded_array
53 54 55 56 57 58 59 60


def softplus(x: Tensor) -> Tensor:
    return F.log(1 + F.exp(-F.abs(x))) + F.relu(x)


def logsigmoid(x: Tensor) -> Tensor:
    return -softplus(-x)