dataset.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
from megengine.data.dataset.vision.meta_vision import VisionDataset
from megengine.data import Collator

import numpy as np
import cv2
import os.path as osp
import json
from collections import defaultdict, OrderedDict


class COCOJoints(VisionDataset):
    """
    we cannot use the official implementation of COCO dataset here.
    The output of __getitem__ function here should be a single person instead of a single image. 
    """

    supported_order = ("image", "keypoints", "boxes", "info")

    keypoint_names = (
        "nose",
        "left_eye",
        "right_eye",
        "left_ear",
        "right_ear",
        "left_shoulder",
        "right_shoulder",
        "left_elbow",
        "right_elbow",
        "left_wrist",
        "right_wrist",
        "left_hip",
        "right_hip",
        "left_knee",
        "right_knee",
        "left_ankle",
        "right_ankle",
    )

    min_bbox_h = 0
    min_bbox_w = 0
    min_box_area = 1500
    min_bbox_score = 1e-10

    def __init__(
        self, root, ann_file, order, image_set="train", remove_untypical_ann=True
    ):

        super(COCOJoints, self).__init__(
            root, order=order, supported_order=self.supported_order
        )

        self.keypoint_num = len(self.keypoint_names)
        self.root = root
        self.image_set = image_set
        self.order = order

        if isinstance(ann_file, str):
            with open(ann_file, "r") as f:
                dataset = json.load(f)
        else:
            dataset = ann_file

        self.imgs = OrderedDict()

        for img in dataset["images"]:
            # for saving memory
            if "license" in img:
                del img["license"]
            if "coco_url" in img:
                del img["coco_url"]
            if "date_captured" in img:
                del img["date_captured"]
            if "flickr_url" in img:
                del img["flickr_url"]
            self.imgs[img["id"]] = img

        self.ids = list(sorted(self.imgs.keys()))

        selected_anns = []
        for ann in dataset["annotations"]:
            if "image_id" in ann.keys() and ann["image_id"] not in self.ids:
                continue

            if "iscrowd" in ann.keys() and ann["iscrowd"]:
                continue

            if remove_untypical_ann:
                if "keypoints" in ann.keys() and "keypoints" in self.order:
                    joints = np.array(ann["keypoints"]).reshape(self.keypoint_num, 3)
                    if np.sum(joints[:, -1]) == 0 or ann["num_keypoints"] == 0:
                        continue

                if "bbox" in ann.keys() and "bbox" in self.order:
                    x, y, h, w = ann["bbox"]
                    if (
                        h < self.min_bbox_h
                        or w < self.min_bbox_w
                        or h * w < self.min_bbox_area
                    ):
                        continue

                if "score" in ann.keys() and "score" in self.order:
                    if ann["score"] < self.min_bbox_score:
                        continue

            selected_anns.append(ann)
        self.anns = selected_anns

    def __len__(self):
        return len(self.anns)

    def get_image_info(self, index):
        img_id = self.anns[index]["image_id"]
        img_info = self.imgs[img_id]
        return img_info

    def __getitem__(self, index):

        ann = self.anns[index]
        img_id = ann["image_id"]
        target = []
        for k in self.order:
            if k == "image":

                file_name = self.imgs[img_id]["file_name"]
                img_path = osp.join(self.root, self.image_set, file_name)
                image = cv2.imread(img_path, cv2.IMREAD_COLOR)
                target.append(image)

            elif k == "keypoints":
                joints = (
                    np.array(ann["keypoints"])
                    .reshape(len(self.keypoint_names), 3)
                    .astype(np.float)
                )
                joints = joints[np.newaxis]
                target.append(joints)

            elif k == "boxes":
                x, y, w, h = np.array(ann["bbox"]).reshape(4)
                bbox = [x, y, x + w, y + h]
                bbox = np.array(bbox, dtype=np.float32)
                target.append(bbox[np.newaxis])

            elif k == "info":
                info = self.imgs[img_id]
                info = [
                    info["height"],
                    info["width"],
                    info["file_name"],
                    ann["image_id"],
                ]
                if "score" in ann.keys():
                    info.append(ann["score"])
                target.append(info)

        return tuple(target)


class HeatmapCollator(Collator):
    def __init__(
        self,
        image_shape,
        heatmap_shape,
        keypoint_num,
        heat_thr,
        heat_kernel,
        heat_range=255,
    ):
        super().__init__()
        self.image_shape = image_shape
        self.heatmap_shape = heatmap_shape
        self.keypoint_num = keypoint_num
        self.heat_thr = heat_thr
        self.heat_kernel = heat_kernel
        self.heat_range = heat_range

        self.stride = image_shape[1] // heatmap_shape[1]

        x = np.arange(0, heatmap_shape[1], 1)
        y = np.arange(0, heatmap_shape[0], 1)

        grid_x, grid_y = np.meshgrid(x, y)

        self.grid_x = grid_x[None].repeat(keypoint_num, 0)
        self.grid_y = grid_y[None].repeat(keypoint_num, 0)

    def apply(self, inputs):
        """
        assume order = ("images, keypoints, bboxes, info")
        """
        batch_data = defaultdict(list)

        for image, keypoints, _, info in inputs:

            batch_data["data"].append(image)

            joints = (keypoints[0, :, :2] + 0.5) / self.stride - 0.5
            heat_valid = np.array(keypoints[0, :, -1]).astype(np.float32)
            dis = (self.grid_x - joints[:, 0, np.newaxis, np.newaxis]) ** 2 + (
                self.grid_y - joints[:, 1, np.newaxis, np.newaxis]
            ) ** 2
            heatmaps = []
            for k in self.heat_kernel:
                heatmap = np.exp(-dis / 2 / k ** 2)
                heatmap[heatmap < self.heat_thr] = 0
                heatmap[heat_valid == 0] = 0
                sum_for_norm = heatmap.sum((1, 2))
                heatmap[sum_for_norm > 0] = (
                    heatmap[sum_for_norm > 0]
                    / sum_for_norm[sum_for_norm > 0][:, None, None]
                )
                maxi = np.max(heatmap, (1, 2))
                heatmap[maxi > 1e-5] = (
                    heatmap[maxi > 1e-5]
                    / maxi[:, None, None][maxi > 1e-5]
                    * self.heat_range
                )
                heatmaps.append(heatmap)

            batch_data["heatmap"].append(np.array(heatmaps))
            batch_data["heat_valid"].append(heat_valid)
            batch_data["info"].append(info)

        for key, v in batch_data.items():
            if key != "info":
                batch_data[key] = np.ascontiguousarray(v).astype(np.float32)
        return batch_data