rpn.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
# -*- coding:utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
import megengine.random as rand
import megengine.functional as F
import megengine.module as M
from official.vision.detection import layers
from official.vision.detection.tools.gpu_nms import batched_nms


class RPN(M.Module):

    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.box_coder = layers.BoxCoder()

        self.stride_list = cfg.rpn_stride
        rpn_channel = cfg.rpn_channel
        self.in_features = cfg.rpn_in_features
        self.anchors_generator = layers.DefaultAnchorGenerator(
            cfg.anchor_base_size,
            cfg.anchor_scales,
            cfg.anchor_aspect_ratios,
            cfg.anchor_offset,
        )
        self.rpn_conv = M.Conv2d(256, rpn_channel, kernel_size=3, stride=1, padding=1)
        self.rpn_cls_score = M.Conv2d(
            rpn_channel, cfg.num_cell_anchors * 2,
            kernel_size=1, stride=1
        )
        self.rpn_bbox_offsets = M.Conv2d(
            rpn_channel, cfg.num_cell_anchors * 4,
            kernel_size=1, stride=1
        )

        for l in [self.rpn_conv, self.rpn_cls_score, self.rpn_bbox_offsets]:
            M.init.normal_(l.weight, std=0.01)
            M.init.fill_(l.bias, 0)

    def forward(self, features, im_info, boxes=None):
        # prediction
        features = [features[x] for x in self.in_features]

        # get anchors
        all_anchors_list = [
            self.anchors_generator(fm, stride)
            for fm, stride in zip(features, self.stride_list)
        ]

        pred_cls_score_list = []
        pred_bbox_offsets_list = []
        for x in features:
            t = F.relu(self.rpn_conv(x))
            scores = self.rpn_cls_score(t)
            pred_cls_score_list.append(
                scores.reshape(
                    scores.shape[0], 2, self.cfg.num_cell_anchors,
                    scores.shape[2], scores.shape[3]
                )
            )
            bbox_offsets = self.rpn_bbox_offsets(t)
            pred_bbox_offsets_list.append(
                bbox_offsets.reshape(
                    bbox_offsets.shape[0], self.cfg.num_cell_anchors, 4,
                    bbox_offsets.shape[2], bbox_offsets.shape[3]
                )
            )
        # sample from the predictions
        rpn_rois = self.find_top_rpn_proposals(
            pred_bbox_offsets_list, pred_cls_score_list,
            all_anchors_list, im_info
        )

        if self.training:
            rpn_labels, rpn_bbox_targets = self.get_ground_truth(
                boxes, im_info, all_anchors_list)
            pred_cls_score, pred_bbox_offsets = self.merge_rpn_score_box(
                pred_cls_score_list, pred_bbox_offsets_list
            )

            # rpn loss
            loss_rpn_cls = layers.softmax_loss(pred_cls_score, rpn_labels)
            loss_rpn_loc = layers.get_smooth_l1_loss(
                pred_bbox_offsets,
                rpn_bbox_targets,
                rpn_labels,
                self.cfg.rpn_smooth_l1_beta,
                norm_type="all"
            )
            loss_dict = {
                "loss_rpn_cls": loss_rpn_cls,
                "loss_rpn_loc": loss_rpn_loc
            }
            return rpn_rois, loss_dict
        else:
            return rpn_rois

    def find_top_rpn_proposals(
        self, rpn_bbox_offsets_list, rpn_cls_prob_list,
        all_anchors_list, im_info
    ):
        prev_nms_top_n = self.cfg.train_prev_nms_top_n \
            if self.training else self.cfg.test_prev_nms_top_n
        post_nms_top_n = self.cfg.train_post_nms_top_n \
            if self.training else self.cfg.test_post_nms_top_n

        batch_per_gpu = self.cfg.batch_per_gpu if self.training else 1
        nms_threshold = self.cfg.rpn_nms_threshold

        list_size = len(rpn_bbox_offsets_list)

        return_rois = []

        for bid in range(batch_per_gpu):
            batch_proposals_list = []
            batch_probs_list = []
            batch_level_list = []
            for l in range(list_size):
                # get proposals and probs
                offsets = rpn_bbox_offsets_list[l][bid].dimshuffle(2, 3, 0, 1).reshape(-1, 4)
                all_anchors = all_anchors_list[l]
                proposals = self.box_coder.decode(all_anchors, offsets)

                probs = rpn_cls_prob_list[l][bid, 1].dimshuffle(1, 2, 0).reshape(1, -1)
                # prev nms top n
                probs, order = F.argsort(probs, descending=True)
                num_proposals = F.minimum(probs.shapeof(1), prev_nms_top_n)
                probs = probs.reshape(-1)[:num_proposals]
                order = order.reshape(-1)[:num_proposals]
                proposals = proposals.ai[order, :]

                batch_proposals_list.append(proposals)
                batch_probs_list.append(probs)
                batch_level_list.append(mge.ones(probs.shapeof(0)) * l)

            proposals = F.concat(batch_proposals_list, axis=0)
            scores = F.concat(batch_probs_list, axis=0)
            level = F.concat(batch_level_list, axis=0)

            proposals = layers.get_clipped_box(proposals, im_info[bid, :])
            # filter empty
            keep_mask = layers.filter_boxes(proposals)
            _, keep_inds = F.cond_take(keep_mask == 1, keep_mask)
            proposals = proposals.ai[keep_inds, :]
            scores = scores.ai[keep_inds]
            level = level.ai[keep_inds]

            # gather the proposals and probs
            # sort nms by scores
            scores, order = F.argsort(scores.reshape(1, -1), descending=True)
            order = order.reshape(-1)
            proposals = proposals.ai[order, :]
            level = level.ai[order]

            # apply total level nms
            rois = F.concat([proposals, scores.reshape(-1, 1)], axis=1)
            keep_inds = batched_nms(proposals, scores, level, nms_threshold, post_nms_top_n)
            rois = rois.ai[keep_inds]

            # rois shape (N, 5), info [batch_id, x1, y1, x2, y2]
            batch_inds = mge.ones((rois.shapeof(0), 1)) * bid
            batch_rois = F.concat([batch_inds, rois[:, :4]], axis=1)
            return_rois.append(batch_rois)

        return F.zero_grad(F.concat(return_rois, axis=0))

    def merge_rpn_score_box(self, rpn_cls_score_list, rpn_bbox_offsets_list):
        final_rpn_cls_score_list = []
        final_rpn_bbox_offsets_list = []

        for bid in range(self.cfg.batch_per_gpu):
            batch_rpn_cls_score_list = []
            batch_rpn_bbox_offsets_list = []

            for i in range(len(self.in_features)):
                rpn_cls_score = rpn_cls_score_list[i][bid] \
                    .dimshuffle(2, 3, 1, 0).reshape(-1, 2)
                rpn_bbox_offsets = rpn_bbox_offsets_list[i][bid] \
                    .dimshuffle(2, 3, 0, 1).reshape(-1, 4)

                batch_rpn_cls_score_list.append(rpn_cls_score)
                batch_rpn_bbox_offsets_list.append(rpn_bbox_offsets)

            batch_rpn_cls_score = F.concat(batch_rpn_cls_score_list, axis=0)
            batch_rpn_bbox_offsets = F.concat(batch_rpn_bbox_offsets_list, axis=0)

            final_rpn_cls_score_list.append(batch_rpn_cls_score)
            final_rpn_bbox_offsets_list.append(batch_rpn_bbox_offsets)

        final_rpn_cls_score = F.concat(final_rpn_cls_score_list, axis=0)
        final_rpn_bbox_offsets = F.concat(final_rpn_bbox_offsets_list, axis=0)
        return final_rpn_cls_score, final_rpn_bbox_offsets

    def per_level_gt(
        self, gt_boxes, im_info, anchors, allow_low_quality_matches=True
    ):
        ignore_label = self.cfg.ignore_label
        # get the gt boxes
        valid_gt_boxes = gt_boxes[:im_info[4], :]
        # compute the iou matrix
        overlaps = layers.get_iou(anchors, valid_gt_boxes[:, :4])
        # match the dtboxes
        a_shp0 = anchors.shape[0]
        max_overlaps = F.max(overlaps, axis=1)
        argmax_overlaps = F.argmax(overlaps, axis=1)
        # all ignore
        labels = mge.ones(a_shp0).astype("int32") * ignore_label
        # set negative ones
        labels = labels * (max_overlaps >= self.cfg.rpn_negative_overlap)
        # set positive ones
        fg_mask = (max_overlaps >= self.cfg.rpn_positive_overlap)
        const_one = mge.tensor(1.0)
        if allow_low_quality_matches:
            # make sure that max iou of gt matched
            gt_argmax_overlaps = F.argmax(overlaps, axis=0)
            num_valid_boxes = valid_gt_boxes.shapeof(0)
            gt_id = F.linspace(0, num_valid_boxes - 1, num_valid_boxes).astype("int32")
            argmax_overlaps = argmax_overlaps.set_ai(gt_id)[gt_argmax_overlaps]
            max_overlaps = max_overlaps.set_ai(
                const_one.broadcast(num_valid_boxes)
            )[gt_argmax_overlaps]
            fg_mask = (max_overlaps >= self.cfg.rpn_positive_overlap)
        # set positive ones
        _, fg_mask_ind = F.cond_take(fg_mask == 1, fg_mask)
        labels = labels.set_ai(const_one.broadcast(fg_mask_ind.shapeof(0)))[fg_mask_ind]
        # compute the targets
        bbox_targets = self.box_coder.encode(
            anchors, valid_gt_boxes.ai[argmax_overlaps, :4]
        )
        return labels, bbox_targets

    def get_ground_truth(self, gt_boxes, im_info, all_anchors_list):
        final_labels_list = []
        final_bbox_targets_list = []

        for bid in range(self.cfg.batch_per_gpu):
            batch_labels_list = []
            batch_bbox_targets_list = []
            for anchors in all_anchors_list:
                rpn_labels_perlvl, rpn_bbox_targets_perlvl = self.per_level_gt(
                    gt_boxes[bid], im_info[bid], anchors,
                )
                batch_labels_list.append(rpn_labels_perlvl)
                batch_bbox_targets_list.append(rpn_bbox_targets_perlvl)

            concated_batch_labels = F.concat(batch_labels_list, axis=0)
            concated_batch_bbox_targets = F.concat(batch_bbox_targets_list, axis=0)

            # sample labels
            num_positive = self.cfg.num_sample_anchors * self.cfg.positive_anchor_ratio
            # sample positive
            concated_batch_labels = self._bernoulli_sample_labels(
                concated_batch_labels,
                num_positive, 1, self.cfg.ignore_label
            )
            # sample negative
            num_positive = (concated_batch_labels == 1).sum()
            num_negative = self.cfg.num_sample_anchors - num_positive
            concated_batch_labels = self._bernoulli_sample_labels(
                concated_batch_labels,
                num_negative, 0, self.cfg.ignore_label
            )

            final_labels_list.append(concated_batch_labels)
            final_bbox_targets_list.append(concated_batch_bbox_targets)
        final_labels = F.concat(final_labels_list, axis=0)
        final_bbox_targets = F.concat(final_bbox_targets_list, axis=0)
        return F.zero_grad(final_labels), F.zero_grad(final_bbox_targets)

    def _bernoulli_sample_labels(
        self, labels, num_samples, sample_value, ignore_label=-1
    ):
        """ Using the bernoulli sampling method"""
        sample_label_mask = (labels == sample_value)
        num_mask = sample_label_mask.sum()
        num_final_samples = F.minimum(num_mask, num_samples)
        # here, we use the bernoulli probability to sample the anchors
        sample_prob = num_final_samples / num_mask
        uniform_rng = rand.uniform(sample_label_mask.shapeof(0))
        to_ignore_mask = (uniform_rng >= sample_prob) * sample_label_mask
        labels = labels * (1 - to_ignore_mask) + to_ignore_mask * ignore_label

        return labels