norm.py 2.7 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# -*- coding: utf-8 -*-
# Copyright 2019 - present, Facebook, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
25
# All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights reserved.
M
MegEngine Team 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# ---------------------------------------------------------------------
import megengine.module as M
import numpy as np

from megengine.core import Buffer


class FrozenBatchNorm2d(M.Module):
    """
    BatchNorm2d, which the weight, bias, running_mean, running_var
    are immutable.
    """

    def __init__(self, num_features, eps=1e-5):
        super().__init__()
        self.num_features = num_features
        self.eps = eps

        self.weight = Buffer(np.ones(num_features, dtype=np.float32))
        self.bias = Buffer(np.zeros(num_features, dtype=np.float32))

        self.running_mean = Buffer(np.zeros((1, num_features, 1, 1), dtype=np.float32))
        self.running_var = Buffer(np.ones((1, num_features, 1, 1), dtype=np.float32))

    def forward(self, x):
        scale = self.weight.reshape(1, -1, 1, 1) * (
            1.0 / (self.running_var + self.eps).sqrt()
        )
        bias = self.bias.reshape(1, -1, 1, 1) - self.running_mean * scale
        return x * scale + bias


def get_norm(norm, out_channels=None):
    """
    Args:
61
        norm (str): currently support "BN", "SyncBN" and "FrozenBN"
M
MegEngine Team 已提交
62 63 64 65 66 67 68

    Returns:
        M.Module or None: the normalization layer
    """
    if isinstance(norm, str):
        if len(norm) == 0:
            return None
69 70 71 72 73
        norm = {
            "BN": M.BatchNorm2d,
            "SyncBN": M.SyncBatchNorm,
            "FrozenBN": FrozenBatchNorm2d
        }[norm]
M
MegEngine Team 已提交
74 75 76 77
    if out_channels is not None:
        return norm(out_channels)
    else:
        return norm