inference.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import json
import os

import cv2
import megengine as mge
import numpy as np
from megengine import jit
import math

from official.vision.keypoints.transforms import get_affine_transform
from official.vision.keypoints.config import Config as cfg

import official.vision.keypoints.models as M
import official.vision.detection.retinanet_res50_1x_800size as Det
from official.vision.detection.tools.test import DetEvaluator
from official.vision.keypoints.test import find_keypoints

logger = mge.get_logger(__name__)


def make_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--arch",
        default="simplebaseline_res50",
        type=str,
        choices=[
            "simplebaseline_res50",
            "simplebaseline_res101",
            "simplebaseline_res152",
        ],
    )
    parser.add_argument(
        "-det", "--detector", default="retinanet_res50_1x_800size", type=str,
    )

    parser.add_argument(
        "-m",
        "--model",
        default="/data/models/simplebaseline_res50_256x192/epoch_199.pkl",
        type=str,
    )
    parser.add_argument(
        "-image", "--image", default="/data/test_keyoint.jpeg", type=str
    )
    return parser


def vis_skeleton(img, all_keypoints):

    canvas = img.copy()
    for keypoints in all_keypoints:
        for ind, skeleton in enumerate(cfg.vis_skeletons):
            jotint1 = skeleton[0]
            jotint2 = skeleton[1]

            X = np.array([keypoints[jotint1, 0], keypoints[jotint2, 0]])

            Y = np.array([keypoints[jotint1, 1], keypoints[jotint2, 1]])

            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5

            angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
            polygon = cv2.ellipse2Poly(
                (int(mX), int(mY)), (int(length / 2), 4), int(angle), 0, 360, 1
            )

            cur_canvas = canvas.copy()
            cv2.fillConvexPoly(cur_canvas, polygon, cfg.vis_colors[ind])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    return canvas


def main():

    parser = make_parser()
    args = parser.parse_args()

    detector = getattr(Det, args.detector)(pretrained=True)
    detector.eval()
    logger.info("Load Model : %s completed", args.detector)

    keypoint_model = getattr(M, args.arch)()
    keypoint_model.load_state_dict(mge.load(args.model)["state_dict"])
    keypoint_model.eval()
    logger.info("Load Model : %s completed", args.arch)

    @jit.trace(symbolic=True)
    def det_func():
        pred = detector(detector.inputs)
        return pred

    @jit.trace(symbolic=True)
    def keypoint_func():
        pred = keypoint_model.predict()
        return pred

    ori_img = cv2.imread(args.image)
    data, im_info = DetEvaluator.process_inputs(
        ori_img.copy(),
        detector.cfg.test_image_short_size,
        detector.cfg.test_image_max_size,
    )
    detector.inputs["im_info"].set_value(im_info)
    detector.inputs["image"].set_value(data.astype(np.float32))

    logger.info("Detecting Humans")
    evaluator = DetEvaluator(detector)
    det_res = evaluator.predict(det_func)

    normalized_img = (ori_img - np.array(cfg.IMG_MEAN).reshape(1, 1, 3)) / np.array(
        cfg.IMG_STD
    ).reshape(1, 1, 3)

    logger.info("Detecting Keypoints")
    all_keypoints = []
    for det in det_res:
        cls_id = int(det[5] + 1)
        if cls_id == 1:
            bbox = det[:4]
            w = bbox[2] - bbox[0]
            h = bbox[3] - bbox[1]

            center_x = (bbox[0] + bbox[2]) / 2
            center_y = (bbox[1] + bbox[3]) / 2

            extend_w = w * (1 + cfg.test_x_ext)
            extend_h = h * (1 + cfg.test_y_ext)

            w_h_ratio = cfg.input_shape[1] / cfg.input_shape[0]
            if extend_w / extend_h > w_h_ratio:
                extend_h = extend_w / w_h_ratio
            else:
                extend_w = extend_h * w_h_ratio

            trans = get_affine_transform(
                np.array([center_x, center_y]),
                np.array([extend_h, extend_w]),
                1,
                0,
                cfg.input_shape,
            )

            croped_img = cv2.warpAffine(
                normalized_img,
                trans,
                (int(cfg.input_shape[1]), int(cfg.input_shape[0])),
                flags=cv2.INTER_LINEAR,
                borderValue=0,
            )

            fliped_img = croped_img[:, ::-1]
            keypoint_input = np.stack([croped_img, fliped_img], 0)
            keypoint_input = keypoint_input.transpose(0, 3, 1, 2)
            keypoint_input = np.ascontiguousarray(keypoint_input).astype(np.float32)

            keypoint_model.inputs["image"].set_value(keypoint_input)

            outs = keypoint_func()
            outs = outs.numpy()
            pred = outs[0]
            fliped_pred = outs[1][cfg.keypoint_flip_order][:, :, ::-1]
            pred = (pred + fliped_pred) / 2

            keypoints = find_keypoints(pred, bbox)
            all_keypoints.append(keypoints)

    logger.info("Visualizing")
    canvas = vis_skeleton(ori_img, all_keypoints)
    cv2.imwrite("vis_skeleton.jpg", canvas)


if __name__ == "__main__":
    main()