inference.py 2.1 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import importlib
import os
import sys

import cv2
import megengine as mge
import numpy as np
from megengine import jit
from megengine.data.dataset import COCO

from official.vision.detection.tools.test import DetEvaluator

logger = mge.get_logger(__name__)


def make_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-f", "--file", default="net.py", type=str, help="net description file"
    )
    parser.add_argument("-i", "--image", default="example.jpg", type=str)
    parser.add_argument("-m", "--model", default=None, type=str)
    return parser


def main():
    parser = make_parser()
    args = parser.parse_args()

    logger.info("Load Model : %s completed", args.model)

    @jit.trace(symbolic=True)
    def val_func():
        pred = model(model.inputs)
        return pred

    sys.path.insert(0, os.path.dirname(args.file))
    current_network = importlib.import_module(os.path.basename(args.file).split(".")[0])
    model = current_network.Net(current_network.Cfg(), batch_size=1)
    model.eval()
50 51 52 53
    state_dict = mge.load(args.model)
    if "state_dict" in state_dict:
        state_dict = state_dict["state_dict"]
    model.load_state_dict(state_dict)
M
MegEngine Team 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    evaluator = DetEvaluator(model)

    ori_img = cv2.imread(args.image)
    data, im_info = DetEvaluator.process_inputs(
        ori_img.copy(), model.cfg.test_image_short_size, model.cfg.test_image_max_size,
    )
    model.inputs["im_info"].set_value(im_info)
    model.inputs["image"].set_value(data.astype(np.float32))
    pred_res = evaluator.predict(val_func)
    res_img = DetEvaluator.vis_det(
        ori_img, pred_res, is_show_label=True, classes=COCO.class_names,
    )
    cv2.imwrite("results.jpg", res_img)


if __name__ == "__main__":
    main()