test.py 6.3 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import importlib
import json
import os
import sys
from multiprocessing import Process, Queue
15
from tqdm import tqdm
M
MegEngine Team 已提交
16 17

import numpy as np
18 19

import megengine as mge
M
MegEngine Team 已提交
20 21 22
from megengine import jit
from megengine.data import DataLoader, SequentialSampler

23
from official.vision.detection.tools.data_mapper import data_mapper
24
from official.vision.detection.tools.utils import DetEvaluator
M
MegEngine Team 已提交
25 26 27 28 29 30 31 32 33

logger = mge.get_logger(__name__)


def make_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-f", "--file", default="net.py", type=str, help="net description file"
    )
34 35 36 37 38 39 40 41 42
    parser.add_argument(
        "-w", "--weight_file", default=None, type=str, help="weights file",
    )
    parser.add_argument(
        "-n", "--ngpus", default=1, type=int, help="total number of gpus for testing",
    )
    parser.add_argument(
        "-d", "--dataset_dir", default="/data/datasets", type=str,
    )
M
MegEngine Team 已提交
43 44 45 46 47 48
    parser.add_argument("-se", "--start_epoch", default=-1, type=int)
    parser.add_argument("-ee", "--end_epoch", default=-1, type=int)
    return parser


def main():
49
    # pylint: disable=import-outside-toplevel
50 51
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval
52

M
MegEngine Team 已提交
53 54 55
    parser = make_parser()
    args = parser.parse_args()

56 57
    sys.path.insert(0, os.path.dirname(args.file))
    current_network = importlib.import_module(os.path.basename(args.file).split(".")[0])
58
    cfg = current_network.Cfg()
59

60 61 62 63 64 65 66
    if args.weight_file:
        args.start_epoch = args.end_epoch = -1
    else:
        if args.start_epoch == -1:
            args.start_epoch = cfg.max_epoch - 1
        if args.end_epoch == -1:
            args.end_epoch = args.start_epoch
67
        assert 0 <= args.start_epoch <= args.end_epoch < cfg.max_epoch
M
MegEngine Team 已提交
68 69

    for epoch_num in range(args.start_epoch, args.end_epoch + 1):
70 71
        if args.weight_file:
            model_file = args.weight_file
M
MegEngine Team 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
        else:
            model_file = "log-of-{}/epoch_{}.pkl".format(
                os.path.basename(args.file).split(".")[0], epoch_num
            )
        logger.info("Load Model : %s completed", model_file)

        results_list = list()
        result_queue = Queue(2000)
        procs = []
        for i in range(args.ngpus):
            proc = Process(
                target=worker,
                args=(
85
                    current_network,
M
MegEngine Team 已提交
86 87 88 89 90 91 92 93 94 95
                    model_file,
                    args.dataset_dir,
                    i,
                    args.ngpus,
                    result_queue,
                ),
            )
            proc.start()
            procs.append(proc)

96 97 98 99 100 101 102
        num_imgs = dict(coco=5000, objects365=30000)

        for _ in tqdm(range(num_imgs[cfg.test_dataset["name"]])):
            results_list.append(result_queue.get())
        for p in procs:
            p.join()

103
        all_results = DetEvaluator.format(results_list, cfg)
M
MegEngine Team 已提交
104 105 106 107 108 109 110 111 112 113
        json_path = "log-of-{}/epoch_{}.json".format(
            os.path.basename(args.file).split(".")[0], epoch_num
        )
        all_results = json.dumps(all_results)

        with open(json_path, "w") as fo:
            fo.write(all_results)
        logger.info("Save to %s finished, start evaluation!", json_path)

        eval_gt = COCO(
114 115 116
            os.path.join(
                args.dataset_dir, cfg.test_dataset["name"], cfg.test_dataset["ann_file"]
            )
M
MegEngine Team 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        )
        eval_dt = eval_gt.loadRes(json_path)
        cocoEval = COCOeval(eval_gt, eval_dt, iouType="bbox")
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        metrics = [
            "AP",
            "AP@0.5",
            "AP@0.75",
            "APs",
            "APm",
            "APl",
            "AR@1",
            "AR@10",
            "AR@100",
            "ARs",
            "ARm",
            "ARl",
        ]
        logger.info("mmAP".center(32, "-"))
        for i, m in enumerate(metrics):
            logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i])
        logger.info("-" * 32)


143
def worker(
144
    current_network, model_file, data_dir, worker_id, total_worker, result_queue,
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
):
    """
    :param net_file: network description file
    :param model_file: file of dump weights
    :param data_dir: the dataset directory
    :param worker_id: the index of the worker
    :param total_worker: number of gpu for evaluation
    :param result_queue: processing queue
    """
    os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_id)

    @jit.trace(symbolic=True)
    def val_func():
        pred = model(model.inputs)
        return pred

161 162 163
    cfg = current_network.Cfg()
    cfg.backbone_pretrained = False
    model = current_network.Net(cfg, batch_size=1)
164 165 166 167 168 169 170 171 172 173 174 175 176 177
    model.eval()
    evaluator = DetEvaluator(model)
    state_dict = mge.load(model_file)
    if "state_dict" in state_dict:
        state_dict = state_dict["state_dict"]
    model.load_state_dict(state_dict)

    loader = build_dataloader(worker_id, total_worker, data_dir, model.cfg)
    for data_dict in loader:
        data, im_info = DetEvaluator.process_inputs(
            data_dict[0][0],
            model.cfg.test_image_short_size,
            model.cfg.test_image_max_size,
        )
178
        model.inputs["image"].set_value(data)
179 180 181 182 183 184
        model.inputs["im_info"].set_value(im_info)

        pred_res = evaluator.predict(val_func)
        result_queue.put_nowait(
            {
                "det_res": pred_res,
185
                "image_id": int(data_dict[1][2][0].split(".")[0]),
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            }
        )


def build_dataloader(rank, world_size, data_dir, cfg):
    val_dataset = data_mapper[cfg.test_dataset["name"]](
        os.path.join(data_dir, cfg.test_dataset["name"], cfg.test_dataset["root"]),
        os.path.join(data_dir, cfg.test_dataset["name"], cfg.test_dataset["ann_file"]),
        order=["image", "info"],
    )
    val_sampler = SequentialSampler(val_dataset, 1, world_size=world_size, rank=rank)
    val_dataloader = DataLoader(val_dataset, sampler=val_sampler, num_workers=2)
    return val_dataloader


M
MegEngine Team 已提交
201 202
if __name__ == "__main__":
    main()