test.py 5.1 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import multiprocessing as mp
import time

import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.distributed as dist
import megengine.functional as F
import megengine.jit as jit

import model as M

logger = mge.get_logger(__name__)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--arch", default="shufflenet_v2_x1_0", type=str)
    parser.add_argument("-d", "--data", default=None, type=str)
    parser.add_argument("-m", "--model", default=None, type=str)

    parser.add_argument("-n", "--ngpus", default=None, type=int)
    parser.add_argument("-w", "--workers", default=4, type=int)
    parser.add_argument("--report-freq", default=50, type=int)
    args = parser.parse_args()

    world_size = mge.get_device_count("gpu") if args.ngpus is None else args.ngpus

    if world_size > 1:
        # start distributed training, dispatch sub-processes
        mp.set_start_method("spawn")
        processes = []
        for rank in range(world_size):
            p = mp.Process(target=worker, args=(rank, world_size, args))
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        worker(0, 1, args)


def worker(rank, world_size, args):
    if world_size > 1:
        # Initialize distributed process group
        logger.info("init distributed process group {} / {}".format(rank, world_size))
        dist.init_process_group(
            master_ip="localhost",
            master_port=23456,
            world_size=world_size,
            rank=rank,
            dev=rank,
        )

    model = getattr(M, args.arch)(pretrained=(args.model is None))
    if args.model:
        logger.info("load weights from %s", args.model)
        model.load_state_dict(mge.load(args.model))

    @jit.trace(symbolic=True)
    def valid_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss, "valid_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1, "valid_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5, "valid_acc5") / dist.get_world_size()
        return loss, acc1, acc5

    logger.info("preparing dataset..")
    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    valid_sampler = data.SequentialSampler(
        valid_dataset, batch_size=100, drop_last=False
    )
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose(
            [
                T.Resize(256),
                T.CenterCrop(224),
                T.Normalize(
                    mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395]
                ),  # BGR
                T.ToMode("CHW"),
            ]
        ),
        num_workers=args.workers,
    )
    _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
    logger.info("Valid %.3f / %.3f", valid_acc, valid_acc5)


def infer(model, data_queue, args, epoch=0):
    objs = AverageMeter("Loss")
    top1 = AverageMeter("Acc@1")
    top5 = AverageMeter("Acc@5")
    total_time = AverageMeter("Time")

    t = time.time()
    for step, (image, label) in enumerate(data_queue):
        n = image.shape[0]
        image = image.astype("float32")  # convert np.uint8 to float32
        label = label.astype("int32")

        loss, acc1, acc5 = model(image, label)

        objs.update(loss.numpy()[0], n)
        top1.update(100 * acc1.numpy()[0], n)
        top5.update(100 * acc5.numpy()[0], n)
        total_time.update(time.time() - t)
        t = time.time()

        if step % args.report_freq == 0 and dist.get_rank() == 0:
            logger.info(
                "Epoch %d Step %d, %s %s %s %s",
                epoch,
                step,
                objs,
                top1,
                top5,
                total_time,
            )

    return objs.avg, top1.avg, top5.avg


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":.3f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)


if __name__ == "__main__":
    main()