test_opr.cpp 22.7 KB
Newer Older
M
Megvii Engine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/**
 * \file test/test_opr.cpp
 * MegRay is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include <algorithm>
#include <iostream>
#include <limits>
#include <string>
#include <thread>
#include <vector>

#include <gtest/gtest.h>

#include "../src/megray.h"
#include "test_base.h"

TEST(TestNcclCommunicator, Init) {
    const int nranks = 3;

    std::vector<std::shared_ptr<MegRay::Communicator>> comms(nranks);
    std::vector<std::string> uids(nranks);
    for (size_t i = 0; i < nranks; i++) {
        comms[i] = MegRay::get_communicator(nranks, i, MegRay::MEGRAY_NCCL);
        uids[i] = comms[i]->get_uid();
    }

34 35 36 37
    auto run = [&](int rank) {
        cudaSetDevice(rank);
        comms[rank]->init(uids);
    };
M
Megvii Engine Team 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    std::vector<std::thread> threads;
    for (size_t i = 0; i < nranks; i++) {
        threads.push_back(std::thread(run, i));
    }

    for (size_t i = 0; i < nranks; i++) {
        threads[i].join();
    }
}

TEST(TestUcxCommunicator, Init) {
    const int nranks = 3;

    std::vector<std::shared_ptr<MegRay::Communicator>> comms(nranks);
    std::vector<std::string> uids(nranks);
    for (int i = 0; i < nranks; i++) {
        comms[i] = MegRay::get_communicator(nranks, i, MegRay::MEGRAY_UCX);
        uids[i] = comms[i]->get_uid();
    }

    auto run = [&](int rank) {
        cudaSetDevice(rank);
        comms[rank]->init(uids);
    };

    std::vector<std::thread> threads;
    for (int i = 0; i < nranks; i++) {
        threads.push_back(std::thread(run, i));
    }

    for (int i = 0; i < nranks; i++) {
        threads[i].join();
    }
}

TEST(TestOpr, SendRecv) {
75 76 77
    std::string msg("test_message");
    const int nranks = 2;
    const size_t len = msg.size();
M
Megvii Engine Team 已提交
78

79 80
    std::vector<std::vector<char>> inputs(nranks);
    std::vector<std::vector<char>> expected_outputs(nranks);
M
Megvii Engine Team 已提交
81

82 83 84 85
    for (size_t i = 0; i < len; i++) {
        inputs[0].push_back(msg[i]);
        expected_outputs[1].push_back(msg[i]);
    }
M
Megvii Engine Team 已提交
86

87 88 89 90 91 92
    auto run = [len](std::shared_ptr<MegRay::Communicator> comm,
                     std::vector<std::string>& uids, int rank,
                     std::vector<char>& input,
                     std::vector<char>& output) -> void {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);
M
Megvii Engine Team 已提交
93 94 95 96 97 98

        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);

        void* ptr;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        CUDA_ASSERT(cudaMalloc(&ptr, len));

        if (rank == 0) {  // send
            CUDA_ASSERT(cudaMemcpy(ptr, input.data(), len, cudaMemcpyHostToDevice));
            comm->send(ptr, len, 1, ctx);
            CUDA_ASSERT(cudaStreamSynchronize(stream));
        } else {  // recv
            comm->recv(ptr, len, 0, ctx);
            CUDA_ASSERT(cudaStreamSynchronize(stream));
            CUDA_ASSERT(cudaMemcpy(output.data(), ptr, len, cudaMemcpyDeviceToHost));
        }
    };

    run_test<char>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs, run);
    run_test<char>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs, run);
}

TEST(TestOpr, Scatter) {
    const int nranks = 3;
    const size_t recvlen = 10;
    const int root = 1;

    std::vector<std::vector<float>> inputs(nranks);
    std::vector<std::vector<float>> outputs(nranks);
    for (size_t i = 0; i < nranks; i++) {
        for (size_t j = 0; j < recvlen; j++) {
            float val = 1.0 * (i + 1) * (j + 2);
            inputs[root].push_back(val);
            outputs[i].push_back(val);
        }
    }

    auto run = [nranks, recvlen, root](std::shared_ptr<MegRay::Communicator> comm,
                                       std::vector<std::string>& uids, int rank,
                                       std::vector<float>& input,
                                       std::vector<float>& output) -> void {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);
M
Megvii Engine Team 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);

        void *in_ptr, *out_ptr;
        CUDA_ASSERT(cudaMalloc(&out_ptr, recvlen * sizeof(float)));

        if (rank == root) {
            CUDA_ASSERT(cudaMalloc(&in_ptr, nranks * recvlen * sizeof(float)));
            CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(),
                                   nranks * recvlen * sizeof(float),
                                   cudaMemcpyHostToDevice));
        } else {
            in_ptr = nullptr;
        }

        int ret = comm->scatter(in_ptr, out_ptr, recvlen,
                                MegRay::MEGRAY_FLOAT32, root, ctx);
        ASSERT_EQ(ret, 0);
M
Megvii Engine Team 已提交
157 158

        CUDA_ASSERT(cudaStreamSynchronize(stream));
159 160 161
        CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                               recvlen * sizeof(float),
                               cudaMemcpyDeviceToHost));
M
Megvii Engine Team 已提交
162
    };
163 164 165
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, outputs, run);
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, outputs, run);
}
M
Megvii Engine Team 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
TEST(TestOpr, Gather) {
    const int nranks = 3;
    const size_t sendlen = 10;
    const int root = 1;

    std::vector<std::vector<float>> inputs(nranks);
    std::vector<std::vector<float>> outputs(nranks);
    for (size_t i = 0; i < nranks; i++) {
        for (size_t j = 0; j < sendlen; j++) {
            float val = 1.0 * (i + 1) * (j + 2);
            inputs[i].push_back(val);
            outputs[root].push_back(val);
        }
    }

    auto run = [nranks, sendlen, root](std::shared_ptr<MegRay::Communicator> comm,
                                       std::vector<std::string>& uids, int rank,
                                       std::vector<float>& input,
                                       std::vector<float>& output) -> void {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);
M
Megvii Engine Team 已提交
188 189 190 191 192

        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        void *in_ptr, *out_ptr;
        CUDA_ASSERT(cudaMalloc(&in_ptr, sendlen * sizeof(float)));
        CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(),
                               sendlen * sizeof(float),
                               cudaMemcpyHostToDevice));

        if (rank == root) {
            CUDA_ASSERT(cudaMalloc(&out_ptr, nranks * sendlen * sizeof(float)));
        } else {
            out_ptr = nullptr;
        }

        int ret = comm->gather(in_ptr, out_ptr, sendlen,
                               MegRay::MEGRAY_FLOAT32, root, ctx);
        ASSERT_EQ(ret, 0);
M
Megvii Engine Team 已提交
208 209 210

        CUDA_ASSERT(cudaStreamSynchronize(stream));

211 212 213 214 215
        if (rank == root) {
            CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                                   nranks * sendlen * sizeof(float),
                                   cudaMemcpyDeviceToHost));
        }
M
Megvii Engine Team 已提交
216
    };
217 218 219
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, outputs, run);
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, outputs, run);
}
M
Megvii Engine Team 已提交
220

221 222 223
TEST(TestOpr, AllToAll) {
    const int nranks = 3;
    const size_t len = 6;
M
Megvii Engine Team 已提交
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    std::vector<std::vector<float>> inputs(nranks, std::vector<float>(nranks * len));
    std::vector<std::vector<float>> outputs(nranks, std::vector<float>(nranks * len));
    for (size_t i = 0; i < nranks; i++) {
        for (size_t j = 0; j < nranks; j++) {
            for (size_t k = 0; k < len; k++) {
                float val = 1.0 * (i + 1) * (j + 2) * (k + 3);
                inputs[i][j * len + k] = val;
                outputs[j][i * len + k] = val;
            }
        }
    }

    auto run = [nranks, len](std::shared_ptr<MegRay::Communicator> comm,
                             std::vector<std::string>& uids, int rank,
                             std::vector<float>& input,
                             std::vector<float>& output) -> void {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);

        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);
M
Megvii Engine Team 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        void *in_ptr, *out_ptr;
        CUDA_ASSERT(cudaMalloc(&in_ptr, nranks * len * sizeof(float)));
        CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(),
                               nranks * len * sizeof(float),
                               cudaMemcpyHostToDevice));
        CUDA_ASSERT(cudaMalloc(&out_ptr, nranks * len * sizeof(float)));

        int ret = comm->all_to_all(in_ptr, out_ptr, len,
                                   MegRay::MEGRAY_FLOAT32, ctx);
        ASSERT_EQ(ret, 0);

        CUDA_ASSERT(cudaStreamSynchronize(stream));

        CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                               nranks * len * sizeof(float),
                               cudaMemcpyDeviceToHost));
    };
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, outputs, run);
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, outputs, run);
M
Megvii Engine Team 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

TEST(TestOpr, AllGather) {
    const int nranks = 3;
    const size_t sendlen = 10;

    std::vector<std::vector<float>> inputs(nranks, std::vector<float>(sendlen));
    std::vector<std::vector<float>> outputs(
            nranks, std::vector<float>(nranks * sendlen));
    for (size_t j = 0; j < sendlen; j++) {
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            for (int k = 0; k < nranks; k++) {
                outputs[k][i * sendlen + j] = inputs[i][j];
            }
        }
    }

    auto run = [nranks, sendlen](std::shared_ptr<MegRay::Communicator> comm,
                                 std::vector<std::string>& uids, int rank,
                                 std::vector<float>& input,
                                 std::vector<float>& output) -> void {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);

        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);

        void *in_ptr, *out_ptr;
        CUDA_ASSERT(cudaMalloc(&in_ptr, sendlen * sizeof(float)));
        CUDA_ASSERT(cudaMalloc(&out_ptr, sendlen * nranks * sizeof(float)));

        CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(), sendlen * sizeof(float),
                               cudaMemcpyHostToDevice));

        int ret = comm->all_gather(in_ptr, out_ptr, sendlen,
                                   MegRay::MEGRAY_FLOAT32, ctx);
        ASSERT_EQ(ret, 0);

        CUDA_ASSERT(cudaStreamSynchronize(stream));
        CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                               nranks * sendlen * sizeof(float),
                               cudaMemcpyDeviceToHost));
    };
312 313
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, outputs, run);
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, outputs, run);
M
Megvii Engine Team 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
}

TEST(TestOpr, AllReduce) {
    const int nranks = 3;
    const size_t len = 10;
    std::vector<std::vector<float>> inputs(nranks, std::vector<float>(len));
    std::vector<std::vector<float>> expected_outputs(nranks,
                                                     std::vector<float>(len));

    auto reduce_func = [nranks, len](MegRay::ReduceOp op) {
        auto run = [nranks, len, op](std::shared_ptr<MegRay::Communicator> comm,
                                     std::vector<std::string>& uids, int rank,
                                     std::vector<float>& input,
                                     std::vector<float>& output) {
            CUDA_ASSERT(cudaSetDevice(rank));
            comm->init(uids);

            cudaStream_t stream;
            CUDA_ASSERT(cudaStreamCreate(&stream));
            auto ctx = MegRay::CudaContext::make(stream);

            void *in_ptr, *out_ptr;
            CUDA_ASSERT(cudaMalloc(&in_ptr, len * sizeof(float)));
            CUDA_ASSERT(cudaMalloc(&out_ptr, len * sizeof(float)));

            CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(), len * sizeof(float),
                                   cudaMemcpyHostToDevice));

            int ret = comm->all_reduce(in_ptr, out_ptr, len,
                                       MegRay::MEGRAY_FLOAT32, op, ctx);
            ASSERT_EQ(ret, 0);

            CUDA_ASSERT(cudaStreamSynchronize(stream));
            CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr, len * sizeof(float),
                                   cudaMemcpyDeviceToHost));
        };
        return run;
    };

    for (size_t j = 0; j < len; j++) {
        float sum = 0;
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            sum += inputs[i][j];
        }
        for (size_t i = 0; i < nranks; i++) {
            expected_outputs[i][j] = sum;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
364
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
365
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
366
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
367 368 369 370 371 372 373 374 375 376 377 378

    for (size_t j = 0; j < len; j++) {
        float max_val = std::numeric_limits<float>::min();
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            max_val = std::max(max_val, inputs[i][j]);
        }
        for (size_t i = 0; i < nranks; i++) {
            expected_outputs[i][j] = max_val;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
379
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
380
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
381
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
382 383 384 385 386 387 388 389 390 391 392 393

    for (size_t j = 0; j < len; j++) {
        float min_val = std::numeric_limits<float>::max();
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            min_val = std::min(min_val, inputs[i][j]);
        }
        for (size_t i = 0; i < nranks; i++) {
            expected_outputs[i][j] = min_val;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
394
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
395
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
396
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
}

TEST(TestOpr, ReduceScatterSum) {
    const int nranks = 3;
    const size_t recvlen = 10;

    std::vector<std::vector<float>> inputs(
            nranks, std::vector<float>(nranks * recvlen));
    std::vector<std::vector<float>> expected_outputs(
            nranks, std::vector<float>(recvlen));
    auto reduce_func = [nranks, recvlen](MegRay::ReduceOp op) {
        auto run = [nranks, recvlen,
                    op](std::shared_ptr<MegRay::Communicator> comm,
                        std::vector<std::string>& uids, int rank,
                        std::vector<float>& input, std::vector<float>& output) {
            CUDA_ASSERT(cudaSetDevice(rank));
            comm->init(uids);

            cudaStream_t stream;
            CUDA_ASSERT(cudaStreamCreate(&stream));
            auto ctx = MegRay::CudaContext::make(stream);

            void *in_ptr, *out_ptr;
            CUDA_ASSERT(cudaMalloc(&in_ptr, nranks * recvlen * sizeof(float)));
            CUDA_ASSERT(cudaMalloc(&out_ptr, recvlen * sizeof(float)));

            CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(),
                                   nranks * recvlen * sizeof(float),
                                   cudaMemcpyHostToDevice));

            int ret = comm->reduce_scatter(in_ptr, out_ptr, recvlen,
                                           MegRay::MEGRAY_FLOAT32, op, ctx);
            ASSERT_EQ(ret, 0);

            CUDA_ASSERT(cudaStreamSynchronize(stream));
            CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                                   recvlen * sizeof(float),
                                   cudaMemcpyDeviceToHost));
        };
        return run;
    };

    for (int k = 0; k < nranks; k++) {
        for (size_t j = 0; j < recvlen; j++) {
            float sum = 0;
            for (size_t i = 0; i < nranks; i++) {
                int m = k * recvlen + j;
                inputs[i][m] = 1.0 * (i + 1) * (m + 1);
                sum += inputs[i][m];
            }
            expected_outputs[k][j] = sum;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
451
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
452
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
453
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466

    for (int k = 0; k < nranks; k++) {
        for (size_t j = 0; j < recvlen; j++) {
            float max_val = std::numeric_limits<float>::min();
            for (size_t i = 0; i < nranks; i++) {
                int m = k * recvlen + j;
                inputs[i][m] = 1.0 * (i + 1) * (m + 1);
                max_val = std::max(inputs[i][m], max_val);
            }
            expected_outputs[k][j] = max_val;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
467
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
468
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
469
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
470 471 472 473 474 475 476 477 478 479 480 481
    for (int k = 0; k < nranks; k++) {
        for (size_t j = 0; j < recvlen; j++) {
            float min_val = std::numeric_limits<float>::max();
            for (size_t i = 0; i < nranks; i++) {
                int m = k * recvlen + j;
                inputs[i][m] = 1.0 * (i + 1) * (m + 1);
                min_val = std::min(inputs[i][m], min_val);
            }
            expected_outputs[k][j] = min_val;
        }
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
482
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
483
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
484
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

TEST(TestOpr, Broadcast) {
    const int nranks = 3;
    const int root = 1;
    const size_t len = 10;

    std::vector<std::vector<float>> inputs(nranks, std::vector<float>(len));
    std::vector<std::vector<float>> outputs(nranks, std::vector<float>(len));
    for (size_t j = 0; j < len; j++) {
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
        }
        for (size_t i = 0; i < nranks; i++) {
            outputs[i][j] = inputs[root][j];
        }
    }

    auto run = [nranks, root, len](std::shared_ptr<MegRay::Communicator> comm,
                                   std::vector<std::string>& uids, int rank,
                                   std::vector<float>& input,
                                   std::vector<float>& output) {
        CUDA_ASSERT(cudaSetDevice(rank));
        comm->init(uids);

        cudaStream_t stream;
        CUDA_ASSERT(cudaStreamCreate(&stream));
        auto ctx = MegRay::CudaContext::make(stream);

        void *in_ptr, *out_ptr;
        CUDA_ASSERT(cudaMalloc(&in_ptr, len * sizeof(float)));
        CUDA_ASSERT(cudaMalloc(&out_ptr, len * sizeof(float)));

        CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(), len * sizeof(float),
                               cudaMemcpyHostToDevice));

        int ret = comm->broadcast(in_ptr, out_ptr, len, MegRay::MEGRAY_FLOAT32,
                                  root, ctx);
        ASSERT_EQ(ret, 0);

        CUDA_ASSERT(cudaStreamSynchronize(stream));
        CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr, len * sizeof(float),
                               cudaMemcpyDeviceToHost));
    };

530 531
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, outputs, run);
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, outputs, run);
M
Megvii Engine Team 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

TEST(TestOpr, ReduceSum) {
    const int nranks = 3;
    const int root = 1;
    const size_t len = 10;

    std::vector<std::vector<float>> inputs(nranks, std::vector<float>(len));
    std::vector<std::vector<float>> expected_outputs(nranks);
    expected_outputs[root].resize(len);

    auto reduce_func = [nranks, root, len](MegRay::ReduceOp op) {
        auto run = [nranks, root, len,
                    op](std::shared_ptr<MegRay::Communicator> comm,
                        std::vector<std::string>& uids, int rank,
                        std::vector<float>& input, std::vector<float>& output) {
            CUDA_ASSERT(cudaSetDevice(rank));
            comm->init(uids);

            cudaStream_t stream;
            CUDA_ASSERT(cudaStreamCreate(&stream));
            auto ctx = MegRay::CudaContext::make(stream);

            void *in_ptr, *out_ptr;
            CUDA_ASSERT(cudaMalloc(&in_ptr, len * sizeof(float)));
            if (rank == root) {
                CUDA_ASSERT(cudaMalloc(&out_ptr, len * sizeof(float)));
            }

            CUDA_ASSERT(cudaMemcpy(in_ptr, input.data(), len * sizeof(float),
                                   cudaMemcpyHostToDevice));

            int ret = comm->reduce(in_ptr, out_ptr, len, MegRay::MEGRAY_FLOAT32,
                                   op, root, ctx);
            ASSERT_EQ(ret, 0);

            CUDA_ASSERT(cudaStreamSynchronize(stream));
            if (rank == root) {
                CUDA_ASSERT(cudaMemcpy(output.data(), out_ptr,
                                       len * sizeof(float),
                                       cudaMemcpyDeviceToHost));
            }
        };
        return run;
    };
    for (size_t j = 0; j < len; j++) {
        float sum = 0;
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            sum += inputs[i][j];
        }
        expected_outputs[root][j] = sum;
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
586
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
587
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
588
                    reduce_func(MegRay::MEGRAY_SUM));
M
Megvii Engine Team 已提交
589 590 591 592 593 594 595 596 597
    for (size_t j = 0; j < len; j++) {
        float max_val = std::numeric_limits<float>::min();
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            max_val = std::max(inputs[i][j], max_val);
        }
        expected_outputs[root][j] = max_val;
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
598
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
599
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
600
                    reduce_func(MegRay::MEGRAY_MAX));
M
Megvii Engine Team 已提交
601 602 603 604 605 606 607 608 609
    for (size_t j = 0; j < len; j++) {
        float min_val = std::numeric_limits<float>::max();
        for (size_t i = 0; i < nranks; i++) {
            inputs[i][j] = 1.0 * (i + 1) * (j + 1);
            min_val = std::min(inputs[i][j], min_val);
        }
        expected_outputs[root][j] = min_val;
    }
    run_test<float>(nranks, MegRay::MEGRAY_NCCL, inputs, expected_outputs,
610
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
611
    run_test<float>(nranks, MegRay::MEGRAY_UCX, inputs, expected_outputs,
612
                    reduce_func(MegRay::MEGRAY_MIN));
M
Megvii Engine Team 已提交
613
}