提交 f71dd489 编写于 作者: M Megvii Engine Team

fix(pass): fix subtensor padding channel

GitOrigin-RevId: c15b86592abb7ec374561c02ae00df3902dbe903
上级 ade024c8
......@@ -114,7 +114,14 @@ void PaddingChannelPass::apply(OptState& opt) const {
auto rewriter = opt.graph().make_rewriter();
auto on_opr = [this, &opt, &rewriter](OperatorNodeBase* opr) {
auto it = m_opr_replace_funcs.find(opr->dyn_typeinfo());
if (it != m_opr_replace_funcs.end()) {
auto is_skip = false;
//! if the input of the opr is dynamic shape, skip it
for (size_t id = 0; id < opr->input().size(); id++) {
if (0 == opr->input(id)->shape().ndim) {
is_skip = true;
}
}
if (it != m_opr_replace_funcs.end() && !is_skip) {
VarNodeArray new_inp;
new_inp.reserve(opr->input().size());
for (auto&& inp : opr->input()) {
......
......@@ -443,4 +443,59 @@ TEST(TestGoptInference, ChannelPaddingMoreOp) {
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}
TEST(TestGoptInference, DynamicShape) {
HostTensorGenerator<> gen;
HostTensorGenerator<dtype::Int32> gen_int;
auto cn = CompNode::load("cpu0");
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkcvar = [&](const char* name, const TensorShape& shp) {
return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
};
auto host_x = gen({1, 4, 8, 8}, cn);
auto host_dy = gen_int({1}, cn);
auto x = opr::Host2DeviceCopy::make(*graph, host_x);
auto dy = opr::Host2DeviceCopy::make(*graph, host_dy);
int32_t* start = host_dy->ptr<int32_t>();
start[0] = 0;
dy = opr::MarkDynamicVar::make(dy);
using AIdx = opr::indexing::AxisIndexer;
auto sub = opr::Subtensor::make(
x, {AIdx::make_interval(1, dy, x.make_scalar(4), x.make_scalar(1))},
OperatorNodeConfig("sub"));
//! Hybrid nchw44 mode
opr::ConvBias::Param param_conv;
param_conv.pad_h = param_conv.pad_w = 1;
auto w1 = mkcvar("w1", {3, 4, 3, 3}), b1 = mkcvar("w1", {1, 3, 1, 1}),
conv1 = opr::ConvBias::make(
sub, w1, b1, param_conv, {}, OperatorNodeConfig("conv1"));
auto w2 = mkcvar("w2", {4, 3, 1, 1}),
y = opr::Convolution::make(conv1, w2, {}, {}, OperatorNodeConfig("conv2"));
SymbolVar y_pad;
unpack_vector(
gopt::GraphOptimizer{}
.add_pass(gopt::PaddingChannelPass::make(
cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW44,
true))
.apply({{y}})
.endpoint_vars(),
y_pad);
auto conv1_opt = find_opr<opr::ConvBias>(y_pad, "conv1");
auto conv2_opt = find_opr<opr::Convolution>(y_pad, "conv2");
//! do not padding input tensor
ASSERT_EQ(conv1_opt->input(0)->shape().ndim, 0);
//! output tensor padding input tensor
ASSERT_EQ(conv2_opt->input(0)->shape().ndim, 0);
HostTensorND host_y_opt, host_y;
auto func = graph->compile(
{make_callback_copy(y, host_y), make_callback_copy(y_pad, host_y_opt)});
func->execute();
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
}
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册