Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
f60ab501
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
f60ab501
编写于
7月 03, 2020
作者:
M
Megvii Engine Team
提交者:
Xu Xinran
7月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mgb/opt): nchw to nchw4 pass suppport ic less than 4
GitOrigin-RevId: a3c205f38f76c8009ea7e4a8a85d12c7dd7f93e9
上级
8ec09922
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
195 addition
and
48 deletion
+195
-48
dnn/src/cuda/convolution/opr_impl.cpp
dnn/src/cuda/convolution/opr_impl.cpp
+33
-6
dnn/src/cuda/convolution/opr_impl.h
dnn/src/cuda/convolution/opr_impl.h
+3
-1
src/gopt/impl/tensor_reformat.cpp
src/gopt/impl/tensor_reformat.cpp
+98
-41
src/gopt/test/inference.cpp
src/gopt/test/inference.cpp
+61
-0
未找到文件。
dnn/src/cuda/convolution/opr_impl.cpp
浏览文件 @
f60ab501
...
...
@@ -10,6 +10,7 @@
*/
#include "src/cuda/convolution/opr_impl.h"
#include "megdnn/dtype.h"
#include "src/cuda/convolution/helper.h"
#include "src/cuda/convolution/backward_data/algo.h"
#include "src/cuda/convolution/backward_filter/algo.h"
...
...
@@ -28,10 +29,35 @@ using namespace convolution;
/* ============== ConvolutionForwardImpl ============== */
ConvolutionForwardImpl
::
ConvBiasExtraData
ConvolutionForwardImpl
::
conv_bias_extra_data
(
const
TensorLayout
&
dst
)
{
ConvolutionForwardImpl
::
conv_bias_extra_data
(
const
TensorLayout
&
src
,
const
TensorLayout
&
filter
,
const
TensorLayout
&
dst
)
{
auto
conv_param
=
param
();
DType
bias_type
;
if
(
src
.
dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS8
)
{
bias_type
=
dtype
::
QuantizedS32
(
src
.
dtype
.
param
<
dtype
::
QuantizedS8
>
().
scale
*
filter
.
dtype
.
param
<
dtype
::
QuantizedS8
>
().
scale
);
}
else
if
(
src
.
dtype
.
enumv
()
==
DTypeEnum
::
Quantized8Asymm
)
{
bias_type
=
dtype
::
QuantizedS32
(
src
.
dtype
.
param
<
dtype
::
Quantized8Asymm
>
().
scale
*
filter
.
dtype
.
param
<
dtype
::
Quantized8Asymm
>
().
scale
);
}
else
if
(
src
.
dtype
.
enumv
()
==
DTypeEnum
::
Uint8
||
src
.
dtype
.
enumv
()
==
DTypeEnum
::
Int8
)
{
bias_type
=
dtype
::
Int32
{};
}
else
if
(
src
.
dtype
.
enumv
()
==
DTypeEnum
::
Quantized4Asymm
)
{
bias_type
=
dtype
::
QuantizedS32
(
src
.
dtype
.
param
<
dtype
::
Quantized4Asymm
>
().
scale
*
filter
.
dtype
.
param
<
dtype
::
Quantized4Asymm
>
().
scale
);
}
else
{
megdnn_assert
(
src
.
dtype
.
category
()
==
DTypeCategory
::
FLOAT
);
bias_type
=
src
.
dtype
;
}
ConvBiasExtraData
ret
=
{
this
->
handle
()
->
create_operator
<
ConvBiasForward
>
(),
TensorLayout
(
dst
.
d
type
),
TensorLayout
(
dst
.
dtype
)};
TensorLayout
(
bias_
type
),
TensorLayout
(
dst
.
dtype
)};
ret
.
convbias_opr
->
param
()
=
{
param
::
ConvBias
::
NonlineMode
::
IDENTITY
,
conv_param
.
mode
,
conv_param
.
sparse
,
...
...
@@ -54,7 +80,7 @@ ConvolutionForwardImpl::get_algorithm_heuristic(const TensorLayout& src,
const
TensorLayout
&
dst
,
size_t
workspace_limit_in_bytes
,
bool
reproducible
)
{
auto
extra_data
=
conv_bias_extra_data
(
dst
);
auto
extra_data
=
conv_bias_extra_data
(
src
,
filter
,
dst
);
return
static_cast
<
ConvBiasForwardImpl
*>
(
extra_data
.
convbias_opr
.
get
())
->
get_algorithm_heuristic
(
src
,
filter
,
extra_data
.
bias_layout
,
extra_data
.
z_layout
,
dst
,
...
...
@@ -65,7 +91,7 @@ std::vector<ConvolutionForwardImpl::Algorithm*>
ConvolutionForwardImpl
::
get_all_algorithms
(
const
TensorLayout
&
src
,
const
TensorLayout
&
filter
,
const
TensorLayout
&
dst
)
{
auto
extra_data
=
conv_bias_extra_data
(
dst
);
auto
extra_data
=
conv_bias_extra_data
(
src
,
filter
,
dst
);
return
static_cast
<
ConvBiasForwardImpl
*>
(
extra_data
.
convbias_opr
.
get
())
->
get_all_algorithms
(
src
,
filter
,
extra_data
.
bias_layout
,
extra_data
.
z_layout
,
dst
);
...
...
@@ -75,7 +101,7 @@ size_t ConvolutionForwardImpl::get_workspace_in_bytes(
const
TensorLayout
&
src
,
const
TensorLayout
&
filter
,
const
TensorLayout
&
dst
,
const
PreprocessedFilter
*
preprocessed_filter
)
{
auto
extra_data
=
conv_bias_extra_data
(
dst
);
auto
extra_data
=
conv_bias_extra_data
(
src
,
filter
,
dst
);
return
static_cast
<
ConvBiasForwardImpl
*>
(
extra_data
.
convbias_opr
.
get
())
->
get_workspace_in_bytes
(
src
,
filter
,
extra_data
.
bias_layout
,
extra_data
.
z_layout
,
...
...
@@ -90,7 +116,8 @@ void ConvolutionForwardImpl::exec(_megdnn_tensor_in src,
_megdnn_tensor_out
dst
,
const
PreprocessedFilter
*
preprocessed_filter
,
_megdnn_workspace
workspace
)
{
auto
extra_data
=
conv_bias_extra_data
(
dst
.
layout
);
auto
extra_data
=
conv_bias_extra_data
(
src
.
layout
,
filter
.
layout
,
dst
.
layout
);
TensorND
bias
(
nullptr
,
extra_data
.
bias_layout
);
TensorND
z
(
nullptr
,
extra_data
.
z_layout
);
return
static_cast
<
ConvBiasForwardImpl
*>
(
extra_data
.
convbias_opr
.
get
())
...
...
dnn/src/cuda/convolution/opr_impl.h
浏览文件 @
f60ab501
...
...
@@ -61,7 +61,9 @@ class ConvolutionForwardImpl: public ConvolutionForward {
TensorLayout
z_layout
;
};
private:
ConvBiasExtraData
conv_bias_extra_data
(
const
TensorLayout
&
);
ConvBiasExtraData
conv_bias_extra_data
(
const
TensorLayout
&
,
const
TensorLayout
&
,
const
TensorLayout
&
);
};
class
ConvolutionBackwardDataImpl
:
public
ConvolutionBackwardData
{
...
...
src/gopt/impl/tensor_reformat.cpp
浏览文件 @
f60ab501
...
...
@@ -60,19 +60,24 @@ MGB_DEFINE_OPR_CLASS(TensorReformatPass::RelayoutPlaceholder,
public
:
//! relayout type of this opr
enum
class
LayoutType
{
NCHW4_TO_NCHW32
,
//!< from nchw4 layout to nchw32 layout
NCHW32_TO_NCHW4
,
//!< from nchw32 layout to nchw4 layout
NCHW4_TO_CHWN4
,
//!< from nchw4 layout to chwn4 layout
CHWN4_TO_NCHW4
,
//!< from chwn4 layout to nchw4 layout
NCHW_TO_NCHW4
,
//!< from nchw layout to nchw4 layout
NCHW4_TO_NCHW
,
//!< from nchw4 layout to nchw layout
NCHW_TO_NCHW88
,
//!< from nchw layout to nchw88 layout
NCHW88_TO_NCHW
,
//!< from nchw88 layout to nchw layout
NCHW4_TO_NCHW32
,
//!< from nchw4 layout to nchw32 layout
NCHW32_TO_NCHW4
,
//!< from nchw32 layout to nchw4 layout
NCHW4_TO_CHWN4
,
//!< from nchw4 layout to chwn4 layout
CHWN4_TO_NCHW4
,
//!< from chwn4 layout to nchw4 layout
NCHW_TO_NCHW4
,
//!< from nchw layout to nchw4 layout
NCHW_TO_NCHW4_IC_SMALL_CONV
,
///< from nchw layout to nchw4 whose
///< channel size less than 4
NCHW4_TO_NCHW
,
//!< from nchw4 layout to nchw layout
NCHW_TO_NCHW88
,
//!< from nchw layout to nchw88 layout
NCHW88_TO_NCHW
,
//!< from nchw88 layout to nchw layout
WEIGHT_NCHW_TO_NCHW4_DENSE
,
//!< weight from nchw layout to nchw4
//!< layout
WEIGHT_NCHW_TO_NCHW4_GROUP
,
//!< group weight from nchw layout to
//!< nchw4 layout
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV
,
//!< weight from nchw layout
//!< to nchw4 layout whose
//! channel size less than 4
WEIGHT_NCHW_TO_NCHW88_DENSE
,
//!< weight from nchw layout to nchw88
//!< layout
...
...
@@ -177,11 +182,21 @@ void TensorReformatPass::RelayoutPlaceholder::init_output_static_infer_desc() {
dst
[
3
]
=
inp_shape
[
2
];
dst
[
4
]
=
inp_shape
[
4
];
}
else
if
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
NCHW_TO_NCHW4
){
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
%
4
==
0
);
RelayoutPlaceholder
::
LayoutType
::
NCHW_TO_NCHW4
||
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
NCHW_TO_NCHW4_IC_SMALL_CONV
)
{
if
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
NCHW_TO_NCHW4
)
{
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
%
4
==
0
);
}
else
{
mgb_assert
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
NCHW_TO_NCHW4_IC_SMALL_CONV
);
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
<
4
);
}
dst
.
ndim
=
5
;
dst
[
0
]
=
inp_shape
[
0
];
dst
[
1
]
=
inp_shape
[
1
]
/
4
;
dst
[
1
]
=
(
inp_shape
[
1
]
+
4
-
1
)
/
4
;
dst
[
2
]
=
inp_shape
[
2
];
dst
[
3
]
=
inp_shape
[
3
];
dst
[
4
]
=
4
;
...
...
@@ -194,11 +209,23 @@ void TensorReformatPass::RelayoutPlaceholder::init_output_static_infer_desc() {
dst
[
2
]
=
inp_shape
[
2
];
dst
[
3
]
=
inp_shape
[
3
];
}
else
if
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
WEIGHT_NCHW_TO_NCHW4_DENSE
)
{
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
%
4
==
0
);
WEIGHT_NCHW_TO_NCHW4_DENSE
||
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV
)
{
if
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
WEIGHT_NCHW_TO_NCHW4_DENSE
)
{
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
%
4
==
0
);
}
else
{
mgb_assert
(
layout_type
()
==
RelayoutPlaceholder
::
LayoutType
::
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV
);
mgb_assert
(
inp_shape
.
ndim
==
4
&&
inp_shape
[
1
]
<
4
);
}
dst
.
ndim
=
5
;
dst
[
0
]
=
inp_shape
[
0
];
dst
[
1
]
=
inp_shape
[
1
]
/
4
;
dst
[
1
]
=
(
inp_shape
[
1
]
+
4
-
1
)
/
4
;
dst
[
2
]
=
inp_shape
[
2
];
dst
[
3
]
=
inp_shape
[
3
];
dst
[
4
]
=
4
;
...
...
@@ -427,6 +454,23 @@ void TensorReformatPass::translate_pass(OptState& opt) const {
auto
y2
=
opr
::
Reshape
::
make
(
y1
,
tshp1
);
return
y2
.
node
();
};
reformat
[
LayoutType
::
NCHW_TO_NCHW4_IC_SMALL_CONV
]
=
[](
VarNode
*
inp
)
->
VarNode
*
{
auto
x
=
SymbolVar
(
inp
);
auto
y
=
opr
::
RelayoutFormat
::
make
(
x
,
megdnn
::
param
::
RelayoutFormat
::
Mode
::
NCHW_NCHW4_IC_SMALL
);
return
y
.
node
();
};
reformat
[
LayoutType
::
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV
]
=
[](
VarNode
*
inp
)
->
VarNode
*
{
auto
x
=
SymbolVar
(
inp
);
auto
y
=
opr
::
RelayoutFormat
::
make
(
x
,
megdnn
::
param
::
RelayoutFormat
::
Mode
::
NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT
);
return
y
.
node
();
};
reformat
[
LayoutType
::
NCHW_TO_NCHW4
]
=
[](
VarNode
*
inp
)
->
VarNode
*
{
auto
x
=
SymbolVar
(
inp
);
auto
xshp
=
opr
::
GetVarShape
::
make
(
x
);
...
...
@@ -1367,29 +1411,40 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
RelayoutMode
weight_to_nchw4_mode_group
=
RelayoutMode
::
WEIGHT_NCHW_TO_NCHW4_GROUP
;
auto
trans_nchw4
=
[
weight_to_nchw4_mode_dense
,
weight_to_nchw4_mode_group
](
struct
ConvMode
{
RelayoutMode
weight
;
RelayoutMode
src
;
};
auto
trans_nchw4
=
[
weight_to_nchw4_mode_dense
,
weight_to_nchw4_mode_group
,
src_to_nchw4_mode
](
const
megdnn
::
param
::
Convolution
::
Sparse
conv_mode
,
const
VarNode
*
filter
)
->
Relayout
Mode
{
const
VarNode
*
filter
)
->
Conv
Mode
{
if
(
conv_mode
==
megdnn
::
param
::
Convolution
::
Sparse
::
DENSE
)
{
mgb_assert
(
filter
->
shape
().
ndim
==
4
,
"The origin filter is not NCHW mode"
);
size_t
IC
=
filter
->
shape
()[
1
];
mgb_assert
(
IC
%
4
==
0
,
"The input channel should be divisible by 4"
);
return
weight_to_nchw4_mode_dense
;
if
(
IC
<
4
)
{
return
{
RelayoutMode
::
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV
,
RelayoutMode
::
NCHW_TO_NCHW4_IC_SMALL_CONV
};
}
else
{
return
{
weight_to_nchw4_mode_dense
,
src_to_nchw4_mode
};
}
}
else
{
mgb_assert
(
conv_mode
==
megdnn
::
param
::
Convolution
::
Sparse
::
GROUP
);
mgb_assert
(
filter
->
shape
().
ndim
==
5
,
"The origin filter if not NCHW mode"
);
size_t
IC
=
filter
->
shape
()[
2
];
mgb_assert
(
IC
%
4
==
0
,
"The input channel should be divisible by 4"
);
return
weight_to_nchw4_mode_group
;
"The input channel should be divisible by 4 for group "
"conv"
);
return
{
weight_to_nchw4_mode_group
,
src_to_nchw4_mode
};
}
};
auto
replace_conv_opr
=
[
trans_nchw4
,
conv_format
,
src_to_nchw4_mode
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
auto
replace_conv_opr
=
[
trans_nchw4
,
conv_format
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
mgb_assert
(
opr
->
input
().
size
()
==
new_inp
.
size
());
auto
&
conv_opr
=
opr
->
cast_final_safe
<
opr
::
ConvolutionForward
>
();
if
(
conv_opr
.
param
().
format
!=
...
...
@@ -1397,18 +1452,19 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
return
serialization
::
copy_opr_shallow
(
*
opr
,
new_inp
,
opr
->
config
());
}
auto
conv_mode
=
trans_nchw4
(
conv_opr
.
param
().
sparse
,
new_inp
[
1
]);
VarNode
*
conv_src
=
new_inp
[
0
],
*
conv_filter
=
new_inp
[
1
];
// src: NCHW --> NCWH4
if
(
new_inp
[
0
]
->
shape
().
ndim
!=
5
)
{
mgb_assert
(
new_inp
[
0
]
->
shape
().
ndim
==
4
);
auto
new_src
=
RelayoutPlaceholder
::
make
(
new_inp
[
0
],
src_to_nchw4_mode
);
auto
new_src
=
RelayoutPlaceholder
::
make
(
new_inp
[
0
],
conv_mode
.
src
);
conv_src
=
new_src
.
node
();
}
// weight: NCHW --> NCHW4
auto
weight_mode
=
trans_nchw4
(
conv_opr
.
param
().
sparse
,
new_inp
[
1
]);
auto
new_filter
=
RelayoutPlaceholder
::
make
(
new_inp
[
1
],
weight_mode
);
auto
new_filter
=
RelayoutPlaceholder
::
make
(
new_inp
[
1
],
conv_mode
.
weight
);
conv_filter
=
new_filter
.
node
();
// format: NCHW --> NCHW4
auto
new_param
=
conv_opr
.
param
();
...
...
@@ -1499,8 +1555,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
};
auto
replace_conv_bias_opr
=
[
trans_nchw4
,
conv_bias_format
,
src_to_nchw4_mode
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
mgb_assert
(
opr
->
input
().
size
()
==
new_inp
.
size
());
auto
&
conv_bias_opr
=
opr
->
cast_final_safe
<
opr
::
ConvBiasForward
>
();
if
(
conv_bias_opr
.
param
().
format
!=
...
...
@@ -1511,17 +1567,18 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
// what should be converted: src, weight
VarNode
*
conv_bias_src
=
new_inp
[
0
],
*
conv_bias_filter
=
new_inp
[
1
];
auto
conv_mode
=
trans_nchw4
(
conv_bias_opr
.
param
().
sparse
,
new_inp
[
1
]);
// src: NCHW --> NCHW4
if
(
new_inp
[
0
]
->
shape
().
ndim
!=
5
)
{
if
(
new_inp
[
0
]
->
shape
().
ndim
!=
5
)
{
mgb_assert
(
new_inp
[
0
]
->
shape
().
ndim
==
4
);
auto
new_src
=
RelayoutPlaceholder
::
make
(
new_inp
[
0
],
src_to_nchw4_mode
);
auto
new_src
=
RelayoutPlaceholder
::
make
(
new_inp
[
0
],
conv_mode
.
src
);
conv_bias_src
=
new_src
.
node
();
}
// weight: NCHW --> NCHW4 or GNCHW --> GNCHW4
auto
weight_mode
=
trans_nchw4
(
conv_bias_opr
.
param
().
sparse
,
new_inp
[
1
]);
auto
new_filter
=
RelayoutPlaceholder
::
make
(
new_inp
[
1
],
weight_mode
);
auto
new_filter
=
RelayoutPlaceholder
::
make
(
new_inp
[
1
],
conv_mode
.
weight
);
conv_bias_filter
=
new_filter
.
node
();
// format: NCHW --> NCHW4
auto
new_param
=
conv_bias_opr
.
param
();
...
...
@@ -1538,8 +1595,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
// bias: NCHW --> NCHW4
VarNode
*
conv_bias_bias
=
new_inp
[
2
];
if
(
new_inp
[
2
]
->
shape
().
ndim
==
4
)
{
auto
new_bias
=
RelayoutPlaceholder
::
make
(
new_inp
[
2
],
src_to_nchw4_mode
);
auto
new_bias
=
RelayoutPlaceholder
::
make
(
new_inp
[
2
],
src_to_nchw4_mode
);
conv_bias_bias
=
new_bias
.
node
();
}
if
(
new_inp
.
size
()
==
3
)
{
...
...
@@ -1554,8 +1611,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){
// z_inp: NCHW --> NCHW4
VarNode
*
z_inp
=
new_inp
[
3
];
if
(
new_inp
[
3
]
->
shape
().
ndim
==
4
)
{
auto
new_z
=
RelayoutPlaceholder
::
make
(
new_inp
[
3
],
src_to_nchw4_mode
);
auto
new_z
=
RelayoutPlaceholder
::
make
(
new_inp
[
3
],
src_to_nchw4_mode
);
z_inp
=
new_z
.
node
();
}
auto
new_conv_bias_opr
=
opr
::
ConvBias
::
make
(
conv_bias_src
,
...
...
src/gopt/test/inference.cpp
浏览文件 @
f60ab501
...
...
@@ -2725,6 +2725,67 @@ TEST(TestGoptInference, ConvertFormatNCHW4) {
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-3
);
}
TEST
(
TestGoptInference
,
ConvertFormatNCHW4Ic3
)
{
REQUIRE_GPU
(
1
);
HostTensorGenerator
<
dtype
::
Float32
,
RandomDistribution
::
UNIFORM
>
gen
{
1.2
f
,
127
*
127
};
auto
graph
=
ComputingGraph
::
make
();
graph
->
options
().
graph_opt_level
=
0
;
auto
mkvar
=
[
&
](
const
char
*
name
,
const
TensorShape
&
shp
,
const
DType
&
dtype
)
{
return
opr
::
TypeCvt
::
make
(
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
gen
(
shp
)).
rename
(
name
),
dtype
);
};
auto
mkcvar
=
[
&
](
const
char
*
name
,
const
TensorShape
&
shp
,
const
DType
&
dtype
)
{
return
opr
::
TypeCvt
::
make
(
opr
::
SharedDeviceTensor
::
make
(
*
graph
,
*
gen
(
shp
))
.
rename
(
name
),
dtype
);
};
auto
x
=
mkvar
(
"x"
,
{
2
,
3
,
16
,
16
},
dtype
::
QuantizedS8
(
2.5
f
));
// ConvBias test dense
opr
::
ConvBias
::
Param
param_conv_bias
;
param_conv_bias
.
pad_h
=
param_conv_bias
.
pad_w
=
1
;
param_conv_bias
.
sparse
=
opr
::
ConvBias
::
Param
::
Sparse
::
DENSE
;
auto
w1
=
mkcvar
(
"w1"
,
{
8
,
3
,
3
,
3
},
dtype
::
QuantizedS8
(
2.5
f
)),
b1
=
mkcvar
(
"b1"
,
{
1
,
8
,
1
,
1
},
dtype
::
QuantizedS32
(
6.25
f
));
auto
conv1
=
opr
::
ConvBias
::
make
(
x
,
w1
,
b1
,
param_conv_bias
,
{},
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
param_conv_bias
.
sparse
=
opr
::
ConvBias
::
Param
::
Sparse
::
GROUP
;
auto
w2
=
mkcvar
(
"w2"
,
{
2
,
4
,
4
,
3
,
3
},
dtype
::
QuantizedS8
(
2.5
f
)),
b2
=
mkcvar
(
"b2"
,
{
1
,
8
,
1
,
1
},
dtype
::
QuantizedS32
(
6.25
f
));
auto
conv2
=
opr
::
ConvBias
::
make
(
conv1
,
w2
,
b2
,
param_conv_bias
,
{},
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
auto
y
=
opr
::
TypeCvt
::
make
(
conv2
,
dtype
::
Float32
());
SymbolVar
y_opt
;
{
auto
options
=
gopt
::
OptimizeForInferenceOptions
{};
options
.
enable_nchw4
();
unpack_vector
(
gopt
::
optimize_for_inference
({
y
},
options
),
y_opt
);
}
ASSERT_EQ
(
opr
::
ConvBias
::
Param
::
Format
::
NCHW4
,
find_opr
<
opr
::
ConvBias
>
(
y_opt
).
param
().
format
);
graph
->
compile
({{
y_opt
,
{}}})
->
to_json
()
->
writeto_fpath
(
output_file
(
"TestGoptInference.ConvertFormatNCHW4Ic3.json"
));
HostTensorND
host_y_opt
,
host_y
;
auto
func
=
graph
->
compile
({
make_callback_copy
(
y
,
host_y
),
make_callback_copy
(
y_opt
,
host_y_opt
)});
func
->
execute
();
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-3
);
}
TEST
(
TestGoptInference
,
ConvertFormatNCHW88
)
{
HostTensorGenerator
<>
gen
;
auto
cn
=
CompNode
::
load
(
"cpu0"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录