提交 f31e52d5 编写于 作者: M Megvii Engine Team

feat(mgb): warpperspective support multi src input

GitOrigin-RevId: 0887656864ea43c7f564882c312d0a8a29a90295
上级 669816e2
...@@ -56,7 +56,22 @@ public: ...@@ -56,7 +56,22 @@ public:
_megdnn_workspace workspace) { _megdnn_workspace workspace) {
exec(src, mat, {}, dst, workspace); exec(src, mat, {}, dst, workspace);
} }
/**
* \param[in] srcs consists of n TensorNDs, each TensorND has shape (1, channel,
* in_height, in_width) \param[in] mat (n, 3, 3) \param[out] dst (n, channel,
* out_height, out_width)
*
* \note
* srcs and dst can have different shapes, as long as their c agree and the size of
* srcs is equal to n. every element of srcs, mat and dst should be contiguous.
*
* equivalent to:
* TensorND src{nullptr, TensorLayout({n, channel, in_height, in_width},
* srcs[0].layout.dtype)}; auto concat = handle()->create_operator<Concat>();
* concat->exec(srcs, src);
* auto warp = handle()->create_operator<WarpPerspectiveForward>();
* warp->exec(src, mat, dst, workspace);
*/
void exec( void exec(
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_in mat, _megdnn_in const TensorNDArray& srcs, _megdnn_tensor_in mat,
_megdnn_tensor_out dst, _megdnn_workspace workspace) { _megdnn_tensor_out dst, _megdnn_workspace workspace) {
...@@ -75,11 +90,25 @@ public: ...@@ -75,11 +90,25 @@ public:
virtual void exec( virtual void exec(
_megdnn_tensor_in src, _megdnn_tensor_in mat, _megdnn_tensor_in mat_idx, _megdnn_tensor_in src, _megdnn_tensor_in mat, _megdnn_tensor_in mat_idx,
_megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
/**
* \p srcs should have m elements, and \p mat and \p mat_idx should
* both have batch size n. Each item in \p mat_idx must be in the range
* of [0, m-1].
*
* \param mat_idx the indices of input image that each matrix in \p mat
* should act on. It can also be empty and in such case \p mat batch size
* should be the same as the number of elements in \p srcs .
*/
virtual void exec( virtual void exec(
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_in mat, _megdnn_in const TensorNDArray& srcs, _megdnn_tensor_in mat,
_megdnn_tensor_in mat_idx, _megdnn_tensor_out dst, _megdnn_tensor_in mat_idx, _megdnn_tensor_out dst,
_megdnn_workspace workspace) = 0; _megdnn_workspace workspace) {
static_cast<void>(srcs);
static_cast<void>(mat);
static_cast<void>(mat_idx);
static_cast<void>(dst);
static_cast<void>(workspace);
}
size_t get_workspace_in_bytes( size_t get_workspace_in_bytes(
const TensorLayout& src, const TensorLayout& mat, const TensorLayout& dst) { const TensorLayout& src, const TensorLayout& mat, const TensorLayout& dst) {
...@@ -98,7 +127,13 @@ public: ...@@ -98,7 +127,13 @@ public:
virtual size_t get_workspace_in_bytes( virtual size_t get_workspace_in_bytes(
const TensorLayoutArray& srcs, const TensorLayout& mat, const TensorLayoutArray& srcs, const TensorLayout& mat,
const TensorLayout& mat_idx, const TensorLayout& dst) = 0; const TensorLayout& mat_idx, const TensorLayout& dst) {
static_cast<void>(srcs);
static_cast<void>(mat);
static_cast<void>(mat_idx);
static_cast<void>(dst);
return 0;
}
protected: protected:
void check_exec( void check_exec(
......
...@@ -10,12 +10,8 @@ void WarpPerspectiveBase::check_layout_fwd( ...@@ -10,12 +10,8 @@ void WarpPerspectiveBase::check_layout_fwd(
auto s = srcs.front(); auto s = srcs.front();
for (auto&& src : srcs) { for (auto&& src : srcs) {
megdnn_assert_contiguous(src); megdnn_assert_contiguous(src);
megdnn_assert(src.dtype == s.dtype); src.eq_layout(s);
megdnn_assert(src.ndim == s.ndim);
megdnn_assert(src.shape[0] == 1); megdnn_assert(src.shape[0] == 1);
for (size_t i = 0; i < s.ndim; i++) {
megdnn_assert(src.shape[i] == s.shape[i]);
}
megdnn_assert(src.format == s.format); megdnn_assert(src.format == s.format);
} }
megdnn_assert_contiguous(mat); megdnn_assert_contiguous(mat);
......
...@@ -289,7 +289,7 @@ TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NCHW) { ...@@ -289,7 +289,7 @@ TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NCHW) {
shapes.emplace_back(TensorShape{{idx, 3, 3}}); shapes.emplace_back(TensorShape{{idx, 3, 3}});
checker.set_rng(bs, &rng); checker.set_rng(bs, &rng);
// mat_idx // mat_idx
shapes.emplace_back(TensorShape{{idx}}); shapes.emplace_back(TensorShape({idx}));
checker.set_dtype(bs + 1, dtype::Int32()); checker.set_dtype(bs + 1, dtype::Int32());
idx_rng = UniformIntRNG{0, (int)bs - 1}; idx_rng = UniformIntRNG{0, (int)bs - 1};
checker.set_rng(bs + 1, &idx_rng); checker.set_rng(bs + 1, &idx_rng);
...@@ -338,7 +338,7 @@ TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NHWC) { ...@@ -338,7 +338,7 @@ TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NHWC) {
shapes.emplace_back(TensorShape{{idx, 3, 3}}); shapes.emplace_back(TensorShape{{idx, 3, 3}});
checker.set_rng(bs, &rng); checker.set_rng(bs, &rng);
// mat_idx // mat_idx
shapes.emplace_back(TensorShape{{idx}}); shapes.emplace_back(TensorShape({idx}));
checker.set_dtype(bs + 1, dtype::Int32()); checker.set_dtype(bs + 1, dtype::Int32());
idx_rng = UniformIntRNG{0, (int)bs - 1}; idx_rng = UniformIntRNG{0, (int)bs - 1};
checker.set_rng(bs + 1, &idx_rng); checker.set_rng(bs + 1, &idx_rng);
......
#include "megbrain/opr/imgproc.h" #include "megbrain/opr/imgproc.h"
#include "./internal/megdnn_opr_wrapper.inl" #include "./internal/megdnn_opr_wrapper.inl"
#include "megbrain/graph/grad_impl.h" #include "megbrain/graph/grad_impl.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/io.h" #include "megbrain/opr/io.h"
#include "megbrain/opr/utility.h" #include "megbrain/opr/utility.h"
...@@ -25,6 +26,26 @@ WarpPerspectiveForward::WarpPerspectiveForward( ...@@ -25,6 +26,26 @@ WarpPerspectiveForward::WarpPerspectiveForward(
outshape_by_symvar_enable(input().size() - 1, input().size() - 1); outshape_by_symvar_enable(input().size() - 1, input().size() - 1);
} }
WarpPerspectiveForward::WarpPerspectiveForward(
const VarNodeArrayView& srcs, VarNode* mat, VarNode* mat_idx,
VarNode* out_shape, const Param& param, const OperatorNodeConfig& config)
: Super(OperatorNodeBaseCtorParam{
srcs[0]->owner_graph(), config, "warp_perspective", {srcs[0], mat}}) {
mgb_assert(!srcs.empty());
m_is_multi_src = true;
m_srcs_size = srcs.size();
init_megdnn_opr(*this, param);
for (auto&& src : srcs) {
add_input({src});
}
if (mat_idx) {
add_input({mat, mat_idx, out_shape});
} else {
add_input({mat, out_shape});
}
outshape_by_symvar_enable(input().size() - 1, input().size() - 1);
}
SymbolVar WarpPerspectiveForward::make( SymbolVar WarpPerspectiveForward::make(
SymbolVar i0, SymbolVar i1, SymbolVar i2, SymbolVar i3, const Param& param, SymbolVar i0, SymbolVar i1, SymbolVar i2, SymbolVar i3, const Param& param,
const OperatorNodeConfig& config) { const OperatorNodeConfig& config) {
...@@ -32,6 +53,15 @@ SymbolVar WarpPerspectiveForward::make( ...@@ -32,6 +53,15 @@ SymbolVar WarpPerspectiveForward::make(
i0.node(), i1.node(), i2.node(), i3.node(), param, config); i0.node(), i1.node(), i2.node(), i3.node(), param, config);
} }
SymbolVar WarpPerspectiveForward::make(
const VarNodeArrayView& i0, SymbolVar i1, SymbolVar i2, SymbolVar i3,
const Param& param, OperatorNodeConfig config) {
mgb_assert(!i0.empty());
intl::BatchedDTypePromotion dtp{i0};
return SymbolVar{i0[0]}.insert_single_output_opr<WarpPerspectiveForward>(
dtp.get_vars(), i1.node(), i2.node(), i3.node(), param, config);
}
void WarpPerspectiveForward::init_output_dtype() { void WarpPerspectiveForward::init_output_dtype() {
if (config().output_dtype().valid()) { if (config().output_dtype().valid()) {
output(0)->dtype(config().output_dtype()); output(0)->dtype(config().output_dtype());
...@@ -48,63 +78,110 @@ void WarpPerspectiveForward::outshape_by_symvar_do_get_output_shape( ...@@ -48,63 +78,110 @@ void WarpPerspectiveForward::outshape_by_symvar_do_get_output_shape(
TensorShape& dest, const ShapeInferInfo& shpinfo) { TensorShape& dest, const ShapeInferInfo& shpinfo) {
TensorShape oshp2d; TensorShape oshp2d;
cg::copy_tensor_value_to_shape(oshp2d, *shpinfo.shpval_inp_val.at(0)); cg::copy_tensor_value_to_shape(oshp2d, *shpinfo.shpval_inp_val.at(0));
auto imgshp = shpinfo.shape_inp_shp.at(0), matshp = shpinfo.shape_inp_shp.at(1);
mgb_assert( TensorShape imgshp, matshp, mat_idx_shp;
(imgshp.ndim == 4 || imgshp.ndim == 5) && matshp.ndim == 3 && TensorShapeArray imgshps;
oshp2d.ndim == 2 && matshp.shape[1] == 3 && matshp.shape[2] == 3, if (!m_is_multi_src) {
"shape mismatch for WarpPerspectiveForward: img=%s mat=%s " imgshp = shpinfo.shape_inp_shp.at(0);
"out2d=%s", matshp = shpinfo.shape_inp_shp.at(1);
imgshp.to_string().c_str(), matshp.to_string().c_str(),
oshp2d.to_string().c_str());
if (input().size() == 3) {
mgb_assert(
imgshp[0] == matshp[0], "batchsize mismatch: img=%zu mat=%zu",
imgshp[0], matshp[0]);
} else {
mgb_assert(input().size() == 4);
auto mat_idx_shp = shpinfo.shape_inp_shp.at(2);
mgb_assert( mgb_assert(
mat_idx_shp[0] == matshp[0] && mat_idx_shp.ndim == 1, (imgshp.ndim == 4 || imgshp.ndim == 5) && matshp.ndim == 3 &&
"invalid mat_idx shape: mat=%zu mat_idx=%s", matshp[0], oshp2d.ndim == 2 && matshp.shape[1] == 3 &&
mat_idx_shp.to_string().c_str()); matshp.shape[2] == 3,
} "shape mismatch for WarpPerspectiveForward: img=%s mat=%s "
"out2d=%s",
imgshp.to_string().c_str(), matshp.to_string().c_str(),
oshp2d.to_string().c_str());
if (input().size() == 3) {
mgb_assert(
imgshp[0] == matshp[0], "batchsize mismatch: img=%zu mat=%zu",
imgshp[0], matshp[0]);
} else {
mgb_assert(input().size() == 4);
mat_idx_shp = shpinfo.shape_inp_shp.at(2);
mgb_assert(
mat_idx_shp[0] == matshp[0] && mat_idx_shp.ndim == 1,
"invalid mat_idx shape: mat=%zu mat_idx=%s", matshp[0],
mat_idx_shp.to_string().c_str());
}
switch (param().format) { switch (param().format) {
case Param::Format::NCHW_NCHW4_IC_SMALL: case Param::Format::NCHW_NCHW4_IC_SMALL:
case Param::Format::NHWC_NCHW4_IC_SMALL: case Param::Format::NHWC_NCHW4_IC_SMALL:
dest.ndim = 5; dest.ndim = 5;
dest[0] = matshp[0]; dest[0] = matshp[0];
dest.shape[1] = 1; dest.shape[1] = 1;
dest.shape[2] = oshp2d.shape[0]; dest.shape[2] = oshp2d.shape[0];
dest.shape[3] = oshp2d.shape[1]; dest.shape[3] = oshp2d.shape[1];
dest.shape[4] = 4; dest.shape[4] = 4;
break; break;
case Param::Format::NHWC_NCHW: case Param::Format::NHWC_NCHW:
dest.ndim = 4; dest.ndim = 4;
dest[0] = matshp[0]; dest[0] = matshp[0];
dest.shape[1] = imgshp.shape[3]; dest.shape[1] = imgshp.shape[3];
dest.shape[2] = oshp2d.shape[0]; dest.shape[2] = oshp2d.shape[0];
dest.shape[3] = oshp2d.shape[1]; dest.shape[3] = oshp2d.shape[1];
break; break;
default: default:
size_t height_idx = 0; size_t height_idx = 0;
if (param().format == Param::Format::NCHW || if (param().format == Param::Format::NCHW ||
param().format == Param::Format::NCHW4 || param().format == Param::Format::NCHW4 ||
param().format == Param::Format::NCHW64) { param().format == Param::Format::NCHW64) {
height_idx = 2; height_idx = 2;
} else { } else {
height_idx = 1; height_idx = 1;
} }
dest = imgshp; dest = imgshp;
dest[0] = matshp[0]; dest[0] = matshp[0];
if (param().format == Param::Format::NHWCD4) { if (param().format == Param::Format::NHWCD4) {
dest.shape[height_idx] = oshp2d.shape[0]; dest.shape[height_idx] = oshp2d.shape[0];
dest.shape[height_idx + 2] = oshp2d.shape[1]; dest.shape[height_idx + 2] = oshp2d.shape[1];
} else { } else {
for (int i = 0; i < 2; ++i) for (int i = 0; i < 2; ++i)
dest.shape[height_idx + i] = oshp2d.shape[i]; dest.shape[height_idx + i] = oshp2d.shape[i];
}
break;
}
} else {
imgshp = shpinfo.shape_inp_shp.at(0);
matshp = shpinfo.shape_inp_shp.at(m_srcs_size);
for (size_t i = 0; i < m_srcs_size; i++) {
imgshps.emplace_back(shpinfo.shape_inp_shp.at(i));
mgb_assert(imgshps[i].ndim == imgshp.ndim);
for (size_t j = 0; j < imgshp.ndim; j++) {
mgb_assert(imgshps[i].shape[j] == imgshp[j]);
} }
break; }
mgb_assert(
imgshp[0] == 1 && imgshp.ndim == 4 && matshp.ndim == 3 &&
oshp2d.ndim == 2 && matshp.shape[1] == 3 &&
matshp.shape[2] == 3,
"shape mismatch for WarpPerspectiveForward: img=%s mat=%s "
"out2d=%s",
imgshp.to_string().c_str(), matshp.to_string().c_str(),
oshp2d.to_string().c_str());
if (input().size() - m_srcs_size == 2) {
mgb_assert(
m_srcs_size == matshp[0], "batchsize mismatch: img=%zu mat=%zu",
m_srcs_size, matshp[0]);
} else {
mgb_assert(input().size() - m_srcs_size == 3);
mat_idx_shp = shpinfo.shape_inp_shp.at(m_srcs_size + 1);
mgb_assert(
mat_idx_shp[0] == matshp[0] && mat_idx_shp.ndim == 1,
"invalid mat_idx shape: mat=%zu mat_idx=%s", matshp[0],
mat_idx_shp.to_string().c_str());
}
size_t height_idx = 0;
if (param().format == Param::Format::NCHW) {
height_idx = 2;
} else {
height_idx = 1;
}
dest = imgshp;
dest[0] = matshp[0];
for (int i = 0; i < 2; ++i)
dest.shape[height_idx + i] = oshp2d.shape[i];
} }
} }
...@@ -114,22 +191,61 @@ void WarpPerspectiveForward::init_output_static_infer_desc() { ...@@ -114,22 +191,61 @@ void WarpPerspectiveForward::init_output_static_infer_desc() {
} }
void WarpPerspectiveForward::scn_do_execute() { void WarpPerspectiveForward::scn_do_execute() {
if (input().size() == 3) { if (!m_is_multi_src) {
intl::_MegDNNOprMethInvoker<2, 1>::exec(megdnn_opr(), this); if (input().size() == 3) {
intl::_MegDNNOprMethInvoker<2, 1>::exec(megdnn_opr(), this);
} else {
intl::_MegDNNOprMethInvoker<3, 1>::exec(megdnn_opr(), this);
}
} else { } else {
intl::_MegDNNOprMethInvoker<3, 1>::exec(megdnn_opr(), this); megdnn::TensorNDArray srcs;
for (size_t i = 0; i < m_srcs_size; i++) {
srcs.push_back(input(i)->dev_tensor().as_megdnn());
}
if (input().size() - m_srcs_size == 2) {
megdnn_opr()->exec(
srcs, input(m_srcs_size)->dev_tensor().as_megdnn(),
output(0)->dev_tensor().as_megdnn(),
intl::get_megdnn_workspace_from_var(output().back()));
} else {
megdnn_opr()->exec(
srcs, input(m_srcs_size)->dev_tensor().as_megdnn(),
input(m_srcs_size + 1)->dev_tensor().as_megdnn(),
output(0)->dev_tensor().as_megdnn(),
intl::get_megdnn_workspace_from_var(output().back()));
}
} }
} }
size_t WarpPerspectiveForward::get_workspace_size_bytes( size_t WarpPerspectiveForward::get_workspace_size_bytes(
const TensorShapeArray& input_shapes, const TensorShapeArray& input_shapes,
const TensorShapeArray& output_shapes) const { const TensorShapeArray& output_shapes) const {
if (input().size() == 3) { if (!m_is_multi_src) {
return intl::_MegDNNOprMethInvoker<2, 1>::get_workspace_in_bytes( if (input().size() == 3) {
megdnn_opr(), this, input_shapes, output_shapes); return intl::_MegDNNOprMethInvoker<2, 1>::get_workspace_in_bytes(
megdnn_opr(), this, input_shapes, output_shapes);
} else {
return intl::_MegDNNOprMethInvoker<3, 1>::get_workspace_in_bytes(
megdnn_opr(), this, input_shapes, output_shapes);
}
} else { } else {
return intl::_MegDNNOprMethInvoker<3, 1>::get_workspace_in_bytes( TensorLayoutArray srcs;
megdnn_opr(), this, input_shapes, output_shapes); for (size_t i = 0; i < m_srcs_size; i++) {
srcs.push_back(TensorLayout{
input_shapes[i], input(i)->dtype(), input(i)->format()});
}
TensorLayout mat{
input_shapes[m_srcs_size], input(m_srcs_size)->dtype(),
input(m_srcs_size)->format()};
TensorLayout dst{output_shapes[0], output(0)->dtype(), output(0)->format()};
if (input().size() - m_srcs_size == 2) {
return megdnn_opr()->get_workspace_in_bytes(srcs, mat, dst);
} else {
TensorLayout mat_idx{
input_shapes[m_srcs_size + 1], input(m_srcs_size + 1)->dtype(),
input(m_srcs_size + 1)->format()};
return megdnn_opr()->get_workspace_in_bytes(srcs, mat, mat_idx, dst);
}
} }
} }
......
...@@ -19,10 +19,34 @@ struct OprMaker<opr::WarpPerspective, 0> { ...@@ -19,10 +19,34 @@ struct OprMaker<opr::WarpPerspective, 0> {
.node() .node()
->owner_opr(); ->owner_opr();
} else { } else {
mgb_assert(inputs.size() == 4); bool with_mat_idx = false;
return Opr::make(inputs[0], inputs[1], inputs[2], inputs[3], param, config) VarNodeArray inps = inputs;
.node() VarNode *mat, *mat_idx, *outshp;
->owner_opr(); outshp = inps.back();
inps.pop_back();
if (inps.back()->shape().ndim == 3) {
mat = inps.back();
} else {
mat_idx = inps.back();
inps.pop_back();
mat = inps.back();
with_mat_idx = true;
}
inps.pop_back();
if (inps.size() == 1) {
mgb_assert(with_mat_idx);
return Opr::make(
inputs[0], inputs[1], inputs[2], inputs[3], param,
config)
.node()
->owner_opr();
} else if (with_mat_idx) {
return Opr::make(inps, mat, mat_idx, outshp, param, config)
.node()
->owner_opr();
} else {
return Opr::make(inps, mat, outshp, param, config).node()->owner_opr();
}
} }
} }
}; };
......
...@@ -31,6 +31,10 @@ public: ...@@ -31,6 +31,10 @@ public:
VarNode* in_tensor, VarNode* mat, VarNode* mat_idx, VarNode* out_shape, VarNode* in_tensor, VarNode* mat, VarNode* mat_idx, VarNode* out_shape,
const Param& param, const OperatorNodeConfig& config); const Param& param, const OperatorNodeConfig& config);
WarpPerspectiveForward(
const VarNodeArrayView& in_tensor, VarNode* mat, VarNode* mat_idx,
VarNode* out_shape, const Param& param, const OperatorNodeConfig& config);
MGE_WIN_DECLSPEC_FUC static SymbolVar make( MGE_WIN_DECLSPEC_FUC static SymbolVar make(
SymbolVar in_tensor, SymbolVar mat, SymbolVar mat_idx, SymbolVar out_shape, SymbolVar in_tensor, SymbolVar mat, SymbolVar mat_idx, SymbolVar out_shape,
const Param& param = {}, const OperatorNodeConfig& config = {}); const Param& param = {}, const OperatorNodeConfig& config = {});
...@@ -49,6 +53,26 @@ public: ...@@ -49,6 +53,26 @@ public:
config); config);
} }
MGE_WIN_DECLSPEC_FUC static SymbolVar make(
const VarNodeArrayView& in_tensor, SymbolVar mat, SymbolVar mat_idx,
SymbolVar out_shape, const Param& param = {},
OperatorNodeConfig config = {});
static SymbolVar make(
const VarNodeArrayView& in_tensor, SymbolVar mat, SymbolVar out_shape,
const Param& param = {}, const OperatorNodeConfig& config = {}) {
return make(in_tensor, mat, SymbolVar{}, out_shape, param, config);
}
static SymbolVar make(
const VarNodeArrayView& in_tensor, SymbolVar mat,
const TensorShape& out_shape, const Param& param = {},
const OperatorNodeConfig& config = {}) {
return make(
in_tensor, mat, cg::var_from_tensor_shape(in_tensor[0], out_shape),
param, config);
}
private: private:
void init_output_dtype() override; void init_output_dtype() override;
void add_input_layout_constraint() override; void add_input_layout_constraint() override;
...@@ -62,6 +86,8 @@ private: ...@@ -62,6 +86,8 @@ private:
const TensorShapeArray& output_shapes) const override; const TensorShapeArray& output_shapes) const override;
void record_execute_deps(ExecDependencyArray& deps) override; void record_execute_deps(ExecDependencyArray& deps) override;
bool m_is_multi_src = false;
size_t m_srcs_size = 0;
}; };
using WarpPerspective = WarpPerspectiveForward; using WarpPerspective = WarpPerspectiveForward;
......
...@@ -89,6 +89,250 @@ TEST(TestOprImgproc, WarpPerspective) { ...@@ -89,6 +89,250 @@ TEST(TestOprImgproc, WarpPerspective) {
.run({TensorShape{N, C, 10, 9}, {N, 3, 3}}, opt); .run({TensorShape{N, C, 10, 9}, {N, 3, 3}}, opt);
} }
TEST(TestOprImgproc, WarpPerspective_MultiSrc) {
set_rand_seed(20220801); // a seed that can pass the test
constexpr size_t INP_H = 6, INP_W = 4, N = 3, C = 3;
using Checker = AutoOprChecker<4, 1>;
TensorShape out_shp{N, C, 9, 10};
auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
SymbolVarArray srcs;
for (size_t i = 0; i < N; i++) {
srcs.push_back(inputs[i]);
}
return {opr::WarpPerspective::make(
srcs, inputs[N], TensorShape{out_shp.shape[2], out_shp.shape[3]})};
};
auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
auto opr = megdnn_naive_handle()->create_operator<megdnn::WarpPerspective>();
dest[0].resize(out_shp);
megdnn::TensorNDArray srcs;
for (size_t i = 0; i < N; i++) {
srcs.push_back(inp[i]->as_megdnn());
}
opr->exec(srcs, inp[N]->as_megdnn(), dest[0].as_megdnn(), {});
};
auto dump_mat = [&](const Checker::NumInpArray& inp) -> std::string {
std::ostringstream ostr;
ostr << std::setprecision(3);
auto&& mat = *inp[N];
mgb_assert(mat.shape().ndim == 3);
auto ptr = mat.ptr<float>();
for (size_t n = 0; n < mat.shape().shape[0]; ++n) {
ostr << "mat " << n << ":\n";
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
ostr << std::setw(10) << *(ptr++);
}
ostr << '\n';
}
}
return ostr.str();
};
Checker::RunOptions opt;
opt.numdiff_eps_single_inp[1] = 1e-5;
opt.numdiff_max_err_single_inp[1] = 0.5;
Checker(make_graph, fwd)
.set_input_generator(N, warp_perspective_mat_gen(N, INP_H, INP_W))
.set_input_dump_on_error(dump_mat)
.disable_grad_check()
.run({TensorShape{1, C, 10, 9}, {1, C, 10, 9}, {1, C, 10, 9}, {N, 3, 3}},
opt)
.run({TensorShape{1, C, 4, 5}, {1, C, 4, 5}, {1, C, 4, 5}, {N, 3, 3}}, opt)
.run({TensorShape{1, C, 6, 5}, {1, C, 6, 5}, {1, C, 6, 5}, {N, 3, 3}}, opt);
}
TEST(TestOprImgproc, WarpPerspective_MultiSrc_NHWC) {
set_rand_seed(20220801); // a seed that can pass the test
opr::WarpPerspective::Param param;
param.format = opr::WarpPerspective::Param::Format::NHWC;
constexpr size_t INP_H = 6, INP_W = 4, N = 3, C = 3;
using Checker = AutoOprChecker<4, 1>;
TensorShape out_shp{N, 9, 10, C};
auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
SymbolVarArray srcs;
for (size_t i = 0; i < N; i++) {
srcs.push_back(inputs[i]);
}
return {opr::WarpPerspective::make(
srcs, inputs[N], TensorShape{out_shp.shape[1], out_shp.shape[2]},
param)};
};
auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
auto opr = megdnn_naive_handle()->create_operator<megdnn::WarpPerspective>();
opr->param() = param;
dest[0].resize(out_shp);
megdnn::TensorNDArray srcs;
for (size_t i = 0; i < N; i++) {
srcs.push_back(inp[i]->as_megdnn());
}
opr->exec(srcs, inp[N]->as_megdnn(), dest[0].as_megdnn(), {});
};
Checker::RunOptions opt;
opt.numdiff_eps_single_inp[1] = 1e-5;
opt.numdiff_max_err_single_inp[1] = 0.5;
Checker(make_graph, fwd)
.set_input_generator(N, warp_perspective_mat_gen(N, INP_H, INP_W))
.disable_grad_check()
.run({TensorShape{1, 10, 9, C}, {1, 10, 9, C}, {1, 10, 9, C}, {N, 3, 3}},
opt)
.run({TensorShape{1, 4, 5, C}, {1, 4, 5, C}, {1, 4, 5, C}, {N, 3, 3}}, opt)
.run({TensorShape{1, 6, 5, C}, {1, 6, 5, C}, {1, 6, 5, C}, {N, 3, 3}}, opt);
}
TEST(TestOprImgproc, WarpPerspectiveWithMatIdx_MultiSrc) {
constexpr size_t INP_H = 13, INP_W = 9, N_MAT = 23, N_SRC = 3, C = 3;
std::mt19937 rng(next_rand_seed());
auto rand_real = [&](double lo, double hi) {
return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
};
auto rand_real2 = [&](double range) { return rand_real(-range, range); };
using Checker = AutoOprChecker<5, 1>;
TensorShape out_shp{N_MAT, C, 9, 10};
auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
SymbolVarArray srcs;
for (size_t i = 0; i < N_SRC; i++) {
srcs.push_back(inputs[i]);
}
return {opr::WarpPerspective::make(
srcs, inputs[N_SRC], inputs[N_SRC + 1],
cg::var_from_tensor_shape(
srcs[0], {out_shp.shape[2], out_shp.shape[3]}))};
};
auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
auto opr = megdnn_naive_handle()->create_operator<megdnn::WarpPerspective>();
dest[0].resize(out_shp);
megdnn::TensorNDArray srcs;
for (size_t i = 0; i < N_SRC; i++) {
srcs.push_back(inp[i]->as_megdnn());
}
opr->exec(
srcs, inp[N_SRC]->as_megdnn(), inp[N_SRC + 1]->as_megdnn(),
dest[0].as_megdnn(), {});
};
auto gen_mat = [&](HostTensorND& mat) {
auto ptr = mat.ptr<float>();
for (size_t i = 0; i < N_MAT; ++i) {
auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
ptr[0] = ptr[4] = cos(rot) * scale;
ptr[1] = -(ptr[3] = sin(rot) * scale);
ptr[3] *= sheer;
ptr[4] *= sheer;
ptr[2] = dx;
ptr[5] = dy;
ptr[6] = kx;
ptr[7] = ky;
ptr[8] = kb;
ptr += 9;
}
mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
};
HostTensorGenerator<dtype::Int32> gen_mat_idx_rng{0, N_SRC};
auto gen_mat_idx = [&](HostTensorND& mat) { mat = *gen_mat_idx_rng(mat.shape()); };
Checker(make_graph, fwd)
.set_input_generator(N_SRC, gen_mat)
.set_input_generator(N_SRC + 1, gen_mat_idx)
.set_input_dtype(N_SRC + 1, dtype::Int32{})
.disable_grad_check()
.run({TensorShape{1, C, 4, 5},
{1, C, 4, 5},
{1, C, 4, 5},
{N_MAT, 3, 3},
{N_MAT}})
.run({TensorShape{1, C, 6, 5},
{1, C, 6, 5},
{1, C, 6, 5},
{N_MAT, 3, 3},
{N_MAT}})
.run({TensorShape{1, C, 22, 19},
{1, C, 22, 19},
{1, C, 22, 19},
{N_MAT, 3, 3},
{N_MAT}});
}
TEST(TestOprImgproc, WarpPerspectiveWithMatIdx_MultiSrc_NHWC) {
constexpr size_t INP_H = 13, INP_W = 9, N_MAT = 23, N_SRC = 3, C = 3;
opr::WarpPerspective::Param param;
param.format = opr::WarpPerspective::Param::Format::NHWC;
std::mt19937 rng(next_rand_seed());
auto rand_real = [&](double lo, double hi) {
return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
};
auto rand_real2 = [&](double range) { return rand_real(-range, range); };
using Checker = AutoOprChecker<5, 1>;
TensorShape out_shp{N_MAT, 9, 10, C};
auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
SymbolVarArray srcs;
for (size_t i = 0; i < N_SRC; i++) {
srcs.push_back(inputs[i]);
}
return {opr::WarpPerspective::make(
srcs, inputs[N_SRC], inputs[N_SRC + 1],
cg::var_from_tensor_shape(
srcs[0], {out_shp.shape[1], out_shp.shape[2]}),
param)};
};
auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
auto opr = megdnn_naive_handle()->create_operator<megdnn::WarpPerspective>();
opr->param() = param;
dest[0].resize(out_shp);
megdnn::TensorNDArray srcs;
for (size_t i = 0; i < N_SRC; i++) {
srcs.push_back(inp[i]->as_megdnn());
}
opr->exec(
srcs, inp[N_SRC]->as_megdnn(), inp[N_SRC + 1]->as_megdnn(),
dest[0].as_megdnn(), {});
};
auto gen_mat = [&](HostTensorND& mat) {
auto ptr = mat.ptr<float>();
for (size_t i = 0; i < N_MAT; ++i) {
auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
ptr[0] = ptr[4] = cos(rot) * scale;
ptr[1] = -(ptr[3] = sin(rot) * scale);
ptr[3] *= sheer;
ptr[4] *= sheer;
ptr[2] = dx;
ptr[5] = dy;
ptr[6] = kx;
ptr[7] = ky;
ptr[8] = kb;
ptr += 9;
}
mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
};
HostTensorGenerator<dtype::Int32> gen_mat_idx_rng{0, N_SRC};
auto gen_mat_idx = [&](HostTensorND& mat) { mat = *gen_mat_idx_rng(mat.shape()); };
Checker(make_graph, fwd)
.set_input_generator(N_SRC, gen_mat)
.set_input_generator(N_SRC + 1, gen_mat_idx)
.set_input_dtype(N_SRC + 1, dtype::Int32{})
.disable_grad_check()
.run({TensorShape{1, 4, 5, C},
{1, 4, 5, C},
{1, 4, 5, C},
{N_MAT, 3, 3},
{N_MAT}})
.run({TensorShape{1, 6, 5, C},
{1, 6, 5, C},
{1, 6, 5, C},
{N_MAT, 3, 3},
{N_MAT}})
.run({TensorShape{1, 22, 19, C},
{1, 22, 19, C},
{1, 22, 19, C},
{N_MAT, 3, 3},
{N_MAT}});
}
TEST(TestOprImgproc, WarpPerspective_NCHW4) { TEST(TestOprImgproc, WarpPerspective_NCHW4) {
set_rand_seed(19931102); set_rand_seed(19931102);
constexpr size_t INP_H = 6, INP_W = 4, N = 2, C = 12; constexpr size_t INP_H = 6, INP_W = 4, N = 2, C = 12;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册