提交 e98049d7 编写于 作者: M Megvii Engine Team

feat(fallback): move arm_common resize f32 algo to fallback gi

GitOrigin-RevId: 3370cdc57a9b1bf673b29c6decf58c28da221d55
上级 5b69af20
......@@ -140,6 +140,8 @@ public:
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; };
const char* name() const override { return "FALLBACK_POOLING"; }
bool usable(const PoolingKernSizeParam&) const override { return true; }
//! use to fallback to algo define at:
//! dnn/src/fallback/pooling/gi/algo.h
void exec(const PoolingKernParam&) const override {
megdnn_assert(false, "code issue happened!!");
}
......
......@@ -30,18 +30,16 @@ void ResizeImpl::exec(
bool is_contiguous = src.layout.is_contiguous() && dst.layout.is_contiguous();
bool is_dtype_same = src.layout.dtype == dst.layout.dtype;
bool is_dtype_fp32 = src.layout.dtype == dtype::Float32();
bool is_dtype_fp16 =
DNN_FLOAT16_SELECT(src.layout.dtype == dtype::Float16(), false);
bool is_dtype_supported = is_dtype_same && (is_dtype_fp32 || is_dtype_fp16);
bool is_dtype_supported = is_dtype_same && is_dtype_fp16;
bool is_nchw = param().format == param::Resize::Format::NCHW &&
(is_dtype_fp32 || is_dtype_fp16);
bool is_nchw44_fp32 =
param().format == param::Resize::Format::NCHW44 && is_dtype_fp32;
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
bool is_nchw = param().format == param::Resize::Format::NCHW && is_dtype_fp16;
bool is_nchw88_fp16 =
param().format == param::Resize::Format::NCHW88 && is_dtype_fp16;
bool is_upsample2 = src.layout.shape[2] * 2 == dst.layout.shape[2] &&
src.layout.shape[3] * 2 == dst.layout.shape[3];
#endif
bool is_imode_nearest =
......@@ -50,8 +48,6 @@ void ResizeImpl::exec(
param().imode == param::Resize::InterpolationMode::INTER_LINEAR;
bool is_imode_supported = is_imode_nearest || is_imode_linear;
bool is_upsample2 = src.layout.shape[2] * 2 == dst.layout.shape[2] &&
src.layout.shape[3] * 2 == dst.layout.shape[3];
bool usable = is_contiguous && is_dtype_supported && is_imode_supported;
if (param().format == param::Resize::Format::NHWC &&
......@@ -59,63 +55,6 @@ void ResizeImpl::exec(
MEGDNN_DISPATCH_CPU_KERN_OPR(resize_cv_exec(src, dst, param().imode));
} else if (!usable) {
fallback::ResizeImpl::exec(src, dst, workspace);
} else if (is_dtype_fp32) {
auto kern_param = KernParam<float>::from_tensors(
param().format, param().imode, src, dst, workspace);
if (is_nchw44_fp32) {
if (is_upsample2) {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(0)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_nearest_upsample2_nchw44_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(1)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_linear_upsample2_nchw44_fp32(kern_param));
}
MIDOUT_END();
}
} else {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(2)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_direct_nearest_nchw44_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(3)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_direct_linear_nchw44_fp32(kern_param));
}
MIDOUT_END();
}
}
} else if (is_nchw) {
if (is_upsample2) {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(4)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_nearest_upsample2_nchw_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_arm_resize, midout_iv(5)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_linear_upsample2_nchw_fp32(kern_param));
}
MIDOUT_END();
}
} else {
fallback::ResizeImpl::exec(src, dst, workspace);
}
} else {
fallback::ResizeImpl::exec(src, dst, workspace);
}
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
} else if (is_dtype_fp16) {
auto kern_param = KernParam<dt_float16>::from_tensors(
......
......@@ -96,28 +96,10 @@ struct Vector<float, 8> {
Vector(const GI_FLOAT32_V2_t& v) { value = v; }
static Vector load(const float* addr) {
Vector v;
#if defined(GI_TEST_NAIVE)
v.value.val[0] = GiLoadFloat32(addr);
v.value.val[1] = GiLoadFloat32(addr + 4);
#elif defined(__arm__) || defined(__aarch64__)
v.value = vld1q_f32_x2(addr);
#else
v.value.val[0] = GiLoadFloat32(addr);
v.value.val[1] = GiLoadFloat32(addr + 4);
#endif
v.value = GiLoadFloat32V2(addr);
return v;
}
static void save(float* addr, const Vector& v) {
#if defined(GI_TEST_NAIVE)
GiStoreFloat32(addr, v.value.val[0]);
GiStoreFloat32(addr + 4, v.value.val[1]);
#elif defined(__arm__) || defined(__aarch64__)
vst1q_f32_x2(addr, v.value);
#else
GiStoreFloat32(addr, v.value.val[0]);
GiStoreFloat32(addr + 4, v.value.val[1]);
#endif
}
static void save(float* addr, const Vector& v) { GiStoreFloat32V2(addr, v.value); }
void save(float* addr) { save(addr, *this); }
Vector operator+(const Vector& lr) {
......
......@@ -143,6 +143,7 @@ typedef int16x8_t GI_INT16_t;
typedef int32x4_t GI_INT32_t;
typedef uint32x4_t GI_UINT32_t;
typedef float32x4x2_t GI_FLOAT32_V2_t;
typedef float32x4x3_t GI_FLOAT32_V3_t;
typedef float32x4x4_t GI_FLOAT32_V4_t;
typedef int32x4x2_t GI_INT32_V2_t;
typedef int32x4x4_t GI_INT32_V4_t;
......@@ -167,6 +168,7 @@ typedef __m128i GI_INT16_t;
typedef __m128i GI_INT32_t;
typedef __m128i GI_UINT32_t;
typedef __m128i GI_INT64_t;
#define _SWAP_HI_LOW32 (2 | (3 << 2) | (0 << 4) | (1 << 6))
#define _INSERTPS_NDX(srcField, dstField) (((srcField) << 6) | ((dstField) << 4))
#define _M64(out, inp) _mm_storel_epi64((__m128i*)&(out), inp)
#define _pM128i(a) _mm_loadl_epi64((__m128i*)&(a))
......@@ -294,6 +296,10 @@ typedef struct {
GI_FLOAT32_NAIVE_t val[2];
} GI_FLOAT32_V2_NAIVE_t;
typedef struct {
GI_FLOAT32_NAIVE_t val[3];
} GI_FLOAT32_V3_NAIVE_t;
typedef struct {
GI_FLOAT32_NAIVE_t val[4];
} GI_FLOAT32_V4_NAIVE_t;
......@@ -334,6 +340,10 @@ typedef struct {
GI_FLOAT32_t val[2];
} GI_FLOAT32_V2_t;
typedef struct {
GI_FLOAT32_t val[3];
} GI_FLOAT32_V3_t;
typedef struct {
GI_FLOAT32_t val[4];
} GI_FLOAT32_V4_t;
......
......@@ -156,6 +156,19 @@ GI_FLOAT32_t GiLoadFloat32(const float* Buffer) {
#endif
}
GI_FORCEINLINE
GI_FLOAT32_V2_t GiLoadFloat32V2(const float* Buffer) {
#if defined(GI_NEON_INTRINSICS)
return vld1q_f32_x2(Buffer);
#else
GI_FLOAT32_V2_t v;
v.val[0] = GiLoadFloat32(Buffer);
v.val[1] = GiLoadFloat32(Buffer + GI_SIMD_LEN_BYTE / sizeof(float));
return v;
#endif
}
GI_FORCEINLINE
GI_FLOAT32_t GiLoadFloat32LowHalf(const float* Buffer) {
#if defined(GI_NEON_INTRINSICS)
......@@ -519,6 +532,16 @@ void GiStoreFloat32(float* Buffer, GI_FLOAT32_t Vector) {
#endif
}
GI_FORCEINLINE
void GiStoreFloat32V2(float* Buffer, GI_FLOAT32_V2_t Vector) {
#if defined(GI_NEON_INTRINSICS)
vst1q_f32_x2(Buffer, Vector);
#else
GiStoreFloat32(Buffer, Vector.val[0]);
GiStoreFloat32(Buffer + GI_SIMD_LEN_BYTE / sizeof(float), Vector.val[1]);
#endif
}
#if defined(GI_NEON_INTRINSICS)
#define GISTORELANEFLOAT32(i) \
GI_FORCEINLINE void GiStoreLane##i##Float32(float* Buffer, GI_FLOAT32_t Vector) { \
......@@ -592,6 +615,18 @@ GI_FLOAT32_V2_t GiZipqFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#endif
}
GI_FORCEINLINE
void GiStoreZipFloat32V2(float* Buffer, GI_FLOAT32_V2_t Vector) {
#if defined(GI_NEON_INTRINSICS)
vst2q_f32(Buffer, Vector);
#else
GI_FLOAT32_V2_t tmp;
tmp = GiZipqFloat32(Vector.val[0], Vector.val[1]);
GiStoreFloat32(Buffer, tmp.val[0]);
GiStoreFloat32(Buffer + GI_SIMD_LEN_BYTE / sizeof(float), tmp.val[1]);
#endif
}
GI_FORCEINLINE
GI_FLOAT32_t GiInterleaveLowFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON64_INTRINSICS)
......@@ -1357,3 +1392,70 @@ GI_FORCEINLINE float32x2_t GiPmaxFloat32(float32x2_t a, float32x2_t b) {
return res;
#endif
}
GI_FORCEINLINE
GI_FLOAT32_V3_t GiLoadUzipFloat32V3(const float* ptr) {
#if defined(GI_NEON_INTRINSICS)
return vld3q_f32(ptr);
#elif defined(GI_SSE2_INTRINSICS)
GI_FLOAT32_V3_t v;
__m128 tmp0, tmp1, tmp2, tmp3;
v.val[0] = GiLoadFloat32(ptr);
v.val[1] = GiLoadFloat32((ptr + 4));
v.val[2] = GiLoadFloat32((ptr + 8));
tmp0 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(v.val[0]), 0 | (3 << 2) | (1 << 4) | (2 << 6)));
tmp1 = _mm_castsi128_ps(
_mm_shuffle_epi32(_mm_castps_si128(v.val[1]), _SWAP_HI_LOW32));
tmp2 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(v.val[2]), 1 | (2 << 2) | (0 << 4) | (3 << 6)));
tmp3 = _mm_unpacklo_ps(tmp1, tmp2);
v.val[0] = _mm_movelh_ps(tmp0, tmp3);
tmp0 = _mm_unpackhi_ps(tmp0, tmp1);
v.val[1] =
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(tmp0), _SWAP_HI_LOW32));
v.val[1] = _mm_movehl_ps(tmp3, v.val[1]);
v.val[2] = _mm_movehl_ps(tmp2, tmp0);
return v;
#else
GI_FLOAT32_V3_t ret;
for (size_t i = 0; i < 3; i++) {
ret.val[i][0] = ptr[0 + i];
ret.val[i][1] = ptr[3 + i];
ret.val[i][2] = ptr[6 + i];
ret.val[i][3] = ptr[9 + i];
}
return ret;
#endif
}
GI_FORCEINLINE
void GiStoreZipFloat32V3(float* ptr, GI_FLOAT32_V3_t val) {
#if defined(GI_NEON_INTRINSICS)
vst3q_f32(ptr, val);
#elif defined(GI_SSE2_INTRINSICS)
GI_FLOAT32_V3_t v;
__m128 tmp0, tmp1, tmp2;
tmp0 = _mm_unpacklo_ps(val.val[0], val.val[1]);
tmp1 = _mm_unpackhi_ps(val.val[0], val.val[1]);
tmp2 = _mm_unpacklo_ps(val.val[1], val.val[2]);
v.val[1] = _mm_shuffle_ps(tmp2, tmp1, _MM_SHUFFLE(1, 0, 3, 2));
v.val[2] = _mm_movehl_ps(val.val[2], tmp1);
v.val[2] = _mm_shuffle_ps(v.val[2], v.val[2], _MM_SHUFFLE(3, 1, 0, 2));
tmp1 = _mm_unpacklo_ps(tmp2, val.val[0]);
v.val[0] = _mm_shuffle_ps(tmp0, tmp1, _MM_SHUFFLE(3, 2, 1, 0));
GiStoreFloat32(ptr, v.val[0]);
GiStoreFloat32((ptr + 4), v.val[1]);
GiStoreFloat32((ptr + 8), v.val[2]);
#else
for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
*ptr++ = val.val[0][i];
*ptr++ = val.val[1][i];
*ptr++ = val.val[2][i];
}
#endif
}
......@@ -45,17 +45,7 @@ void sgemv_gi_naive_n_mk4(
while (k < K) {
GI_FLOAT32_t b = GiLoadFloat32(Bptr);
GI_FLOAT32_V2_t a[2];
#if defined(GI_TEST_NAIVE)
#define LOAD_A(step) \
a[step].val[0] = GiLoadFloat32(Aptr0 + step * 8); \
a[step].val[1] = GiLoadFloat32(Aptr0 + step * 8 + 4);
#elif defined(__arm__) || defined(__aarch64__)
#define LOAD_A(step) a[step] = vld1q_f32_x2(Aptr0 + step * 8);
#else
#define LOAD_A(step) \
a[step].val[0] = GiLoadFloat32(Aptr0 + step * 8); \
a[step].val[1] = GiLoadFloat32(Aptr0 + step * 8 + 4);
#endif
#define LOAD_A(step) a[step] = GiLoadFloat32V2(Aptr0 + step * 8);
UNROLL_CALL_RAW(2, LOAD_A)
#undef LOAD_A
......
......@@ -34,6 +34,8 @@ private:
_megdnn_tensor_in src, _megdnn_tensor_out dst, const Param& param);
void exec_w2x2_s2x2_int8(_megdnn_tensor_in src, _megdnn_tensor_out dst);
void exec_w2x2_s2x2_avg_int8(_megdnn_tensor_in src, _megdnn_tensor_out dst);
void exec_fallback(
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace);
public:
using naive::PoolingForwardImpl::PoolingForwardImpl;
......@@ -43,9 +45,6 @@ public:
_megdnn_tensor_in src, _megdnn_tensor_out dst,
_megdnn_workspace workspace) override;
void exec_fallback(
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace);
size_t get_workspace_in_bytes(const TensorLayout&, const TensorLayout&) override;
static size_t constexpr MAX_SPATIAL_DIM = 2;
......
#include "src/fallback/resize/gi/direct_nchwxx.h"
using namespace megdnn;
using namespace fallback;
using namespace resize;
namespace {
template <typename ctype, InterpolationMode imode>
void resize_direct_nchwxx(
const ctype* sptr, ctype* dptr, size_t N, size_t IH, size_t IW, size_t OH,
size_t OW) {
using simd_helper = SIMDHelper<ctype>;
constexpr size_t PC = simd_helper::simd_width;
using simd_type = typename simd_helper::simd_type;
float scale_h = static_cast<float>(OH) / IH;
float scale_w = static_cast<float>(OW) / IW;
for (size_t n = 0; n < N; ++n) {
for (size_t oh = 0; oh < OH; ++oh) {
for (size_t ow = 0; ow < OW; ++ow) {
int ih0, ih1, iw0, iw1;
float ah0, ah1, aw0, aw1;
std::tie(ah0, ih0, ah1, ih1) =
get_nearest_linear_coord(imode, scale_h, IH, oh);
std::tie(aw0, iw0, aw1, iw1) =
get_nearest_linear_coord(imode, scale_w, IW, ow);
simd_type r0 = simd_helper::load(sptr + (ih0 * IW + iw0) * PC);
simd_type r1 = simd_helper::load(sptr + (ih0 * IW + iw1) * PC);
simd_type r2 = simd_helper::load(sptr + (ih1 * IW + iw0) * PC);
simd_type r3 = simd_helper::load(sptr + (ih1 * IW + iw1) * PC);
// FIXME: weight fp16 may cause precision problem
ctype a0 = ah0 * aw0;
ctype a1 = ah0 * aw1;
ctype a2 = ah1 * aw0;
ctype a3 = ah1 * aw1;
simd_type c = simd_helper::dup(0);
c = simd_helper::fma(c, r0, a0);
c = simd_helper::fma(c, r1, a1);
c = simd_helper::fma(c, r2, a2);
c = simd_helper::fma(c, r3, a3);
simd_helper::store(dptr + (oh * OW + ow) * PC, c);
}
}
sptr += IH * IW * PC;
dptr += OH * OW * PC;
}
}
} // namespace
void megdnn::fallback::resize_direct_nearest_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
resize_direct_nchwxx<float, InterpolationMode::INTER_NEAREST>(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c / 4,
kern_param.ih, kern_param.iw, kern_param.oh, kern_param.ow);
}
void megdnn::fallback::resize_direct_linear_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
resize_direct_nchwxx<float, InterpolationMode::INTER_LINEAR>(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c / 4,
kern_param.ih, kern_param.iw, kern_param.oh, kern_param.ow);
}
#pragma once
#include "src/fallback/resize/gi/helper.h"
#include "src/fallback/resize/opr_impl.h"
namespace megdnn {
namespace fallback {
void resize_direct_linear_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
void resize_direct_nearest_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
} // namespace fallback
} // namespace megdnn
#pragma once
#include "src/fallback/general_intrinsic/gi_float.h"
#include "src/fallback/resize/opr_impl.h"
namespace megdnn {
namespace fallback {
namespace resize {
using InterpolationMode = Resize::InterpolationMode;
template <typename ctype>
struct SIMDHelper {};
template <>
struct SIMDHelper<float> {
using simd_type = GI_FLOAT32_t;
using simd_type_x2 = GI_FLOAT32_V2_t;
using ctype = float;
static constexpr size_t simd_width = 4;
static GI_FORCEINLINE simd_type load(const ctype* src_ptr) {
return GiLoadFloat32(src_ptr);
}
static GI_FORCEINLINE void store(ctype* dst_ptr, const simd_type& rdst) {
GiStoreFloat32(dst_ptr, rdst);
}
static GI_FORCEINLINE void store2_interleave(
ctype* dst_ptr, const simd_type& rdst1, const simd_type& rdst2) {
simd_type_x2 rdst;
rdst.val[0] = rdst1;
rdst.val[1] = rdst2;
GiStoreZipFloat32V2(dst_ptr, rdst);
}
static GI_FORCEINLINE simd_type
fma(const simd_type& a, const simd_type& b, ctype n) {
return GiMultiplyAddScalarFloat32(a, b, n);
}
static GI_FORCEINLINE simd_type
fma(const simd_type& a, const simd_type& b, const simd_type& c) {
return GiMlaqFloat32(a, b, c);
}
static GI_FORCEINLINE simd_type dup(float val) { return GiBroadcastFloat32(val); }
};
static GI_FORCEINLINE int get_nearest_src(float scale, int size, int idx) {
return std::min(static_cast<int>(idx / scale), size - 1);
}
static GI_FORCEINLINE std::tuple<float, int, float, int> get_nearest_linear_coord(
InterpolationMode imode, float scale, int size, int idx) {
if (size == 1) {
return std::make_tuple(1.0f, 0, 0.0f, 0);
}
float alpha = (idx + 0.5f) / scale - 0.5f;
int origin_idx = static_cast<int>(floor(alpha));
alpha -= origin_idx;
if (imode == InterpolationMode::INTER_NEAREST) {
origin_idx = get_nearest_src(scale, size, idx);
alpha = 0;
}
if (origin_idx < 0) {
origin_idx = 0;
alpha = 0;
} else if (origin_idx + 1 >= size) {
origin_idx = size - 2;
alpha = 1;
}
return std::make_tuple(1 - alpha, origin_idx, alpha, origin_idx + 1);
}
}; // namespace resize
}; // namespace fallback
}; // namespace megdnn
此差异已折叠。
#include <megdnn/oprs.h>
#include "src/common/cv/helper.h"
#include "src/fallback/resize/gi/helper.h"
namespace megdnn {
namespace fallback {
/**
* \fn resize_cv_exec
* \brief Used if the format is NHWC, transfer from megcv
*/
void resize_cv_gi_exec(
_megdnn_tensor_in src, _megdnn_tensor_out dst,
param::Resize::InterpolationMode imode);
} // namespace fallback
} // namespace megdnn
// vim: syntax=cpp.doxygen
#include "src/fallback/resize/gi/upsample2_nchw.h"
using namespace megdnn;
using namespace fallback;
using namespace resize;
namespace {
template <typename ctype, size_t fh, size_t fw>
static GI_FORCEINLINE ctype
compute_linear_element(const ctype src[4], const ctype alpha[2]) {
return src[0] * alpha[0 ^ fh] * alpha[0 ^ fw] +
src[1] * alpha[0 ^ fh] * alpha[1 ^ fw] +
src[2] * alpha[1 ^ fh] * alpha[0 ^ fw] +
src[3] * alpha[1 ^ fh] * alpha[1 ^ fw];
}
template <typename simd_helper, size_t fh, size_t fw>
static GI_FORCEINLINE typename simd_helper::simd_type compute_linear_element_simd(
const typename simd_helper::simd_type src[4],
const typename simd_helper::simd_type alpha[2][2]) {
typename simd_helper::simd_type c = simd_helper::dup(0);
c = simd_helper::fma(c, src[0], alpha[0 ^ fh][0 ^ fw]);
c = simd_helper::fma(c, src[1], alpha[0 ^ fh][1 ^ fw]);
c = simd_helper::fma(c, src[2], alpha[1 ^ fh][0 ^ fw]);
c = simd_helper::fma(c, src[3], alpha[1 ^ fh][1 ^ fw]);
return c;
}
template <typename ctype, bool has_right, bool has_bottom>
static GI_FORCEINLINE void compute_linear_2x2_element(
const ctype* src, ctype* dst, size_t IW, size_t OW, const ctype alpha[2]) {
const ctype* src_ptr[4] = {src, src, src, src};
if (has_right) {
src_ptr[1] += 1;
src_ptr[3] += 1;
}
if (has_bottom) {
src_ptr[2] += IW;
src_ptr[3] += IW;
}
ctype rsrc[4];
rsrc[0] = *src_ptr[0];
rsrc[1] = *src_ptr[1];
rsrc[2] = *src_ptr[2];
rsrc[3] = *src_ptr[3];
dst[0] = compute_linear_element<ctype, 0, 0>(rsrc, alpha);
if (has_right) {
dst[1] = compute_linear_element<ctype, 0, 1>(rsrc, alpha);
}
if (has_bottom) {
dst[OW] = compute_linear_element<ctype, 1, 0>(rsrc, alpha);
}
if (has_right && has_bottom) {
dst[OW + 1] = compute_linear_element<ctype, 1, 1>(rsrc, alpha);
}
}
template <typename simd_helper>
static GI_FORCEINLINE void compute_linear_2x2_element_simd(
const typename simd_helper::ctype* src, typename simd_helper::ctype* dst,
size_t IW, size_t OW, const typename simd_helper::simd_type alpha[2][2]) {
using simd_type = typename simd_helper::simd_type;
simd_type rsrc[4];
rsrc[0] = simd_helper::load(src);
rsrc[1] = simd_helper::load(src + 1);
rsrc[2] = simd_helper::load(src + IW);
rsrc[3] = simd_helper::load(src + IW + 1);
simd_type rdst[4];
rdst[0] = compute_linear_element_simd<simd_helper, 0, 0>(rsrc, alpha);
rdst[1] = compute_linear_element_simd<simd_helper, 0, 1>(rsrc, alpha);
rdst[2] = compute_linear_element_simd<simd_helper, 1, 0>(rsrc, alpha);
rdst[3] = compute_linear_element_simd<simd_helper, 1, 1>(rsrc, alpha);
simd_helper::store2_interleave(dst, rdst[0], rdst[1]);
simd_helper::store2_interleave(dst + OW, rdst[2], rdst[3]);
}
template <typename ctype>
void linear_upsample2_nchw(
const ctype* src_ptr, ctype* dst_ptr, size_t N, size_t IH, size_t IW) {
using simd_helper = SIMDHelper<ctype>;
size_t OW = IW * 2;
constexpr size_t PC = simd_helper::simd_width;
ctype alpha[2] = {0.75, 0.25};
typename simd_helper::simd_type simd_alpha[2][2];
simd_alpha[0][0] = simd_helper::dup(0.75 * 0.75);
simd_alpha[0][1] = simd_helper::dup(0.75 * 0.25);
simd_alpha[1][0] = simd_helper::dup(0.25 * 0.75);
simd_alpha[1][1] = simd_helper::dup(0.25 * 0.25);
for (size_t i = 0; i < N; ++i) {
compute_linear_2x2_element<ctype, false, false>(
src_ptr, dst_ptr, IW, OW, alpha);
{
for (size_t iw = 0; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<ctype, true, false>(
src_ptr + iw, dst_ptr + (iw * 2 + 1), IW, OW, alpha);
}
}
compute_linear_2x2_element<ctype, false, false>(
src_ptr + (IW - 1), dst_ptr + (OW - 1), IW, OW, alpha);
dst_ptr += OW;
for (size_t ih = 0; ih + 1 < IH; ++ih) {
compute_linear_2x2_element<ctype, false, true>(
src_ptr, dst_ptr, IW, OW, alpha);
size_t iw = 0;
for (; iw + PC < IW; iw += PC) {
compute_linear_2x2_element_simd<simd_helper>(
src_ptr + iw, dst_ptr + (iw * 2 + 1), IW, OW, simd_alpha);
}
for (; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<ctype, true, true>(
src_ptr + iw, dst_ptr + (iw * 2 + 1), IW, OW, alpha);
}
compute_linear_2x2_element<ctype, false, true>(
src_ptr + (IW - 1), dst_ptr + (OW - 1), IW, OW, alpha);
src_ptr += IW;
dst_ptr += 2 * OW;
}
compute_linear_2x2_element<ctype, false, false>(
src_ptr, dst_ptr, IW, OW, alpha);
{
for (size_t iw = 0; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<ctype, true, false>(
src_ptr + iw, dst_ptr + (iw * 2 + 1), IW, OW, alpha);
}
}
compute_linear_2x2_element<ctype, false, false>(
src_ptr + (IW - 1), dst_ptr + (OW - 1), IW, OW, alpha);
src_ptr += IW;
dst_ptr += OW;
}
}
template <typename ctype>
void nearest_upsample2_nchw(
const ctype* src_ptr, ctype* dst_ptr, size_t N, size_t IH, size_t IW) {
using simd_helper = SIMDHelper<ctype>;
size_t OW = IW * 2;
constexpr size_t PC = simd_helper::simd_width;
for (size_t i = 0; i < N; ++i) {
for (size_t ih = 0; ih < IH; ++ih) {
size_t iw = 0;
for (; iw + PC - 1 < IW; iw += PC) {
typename simd_helper::simd_type r0 = simd_helper::load(src_ptr + iw);
simd_helper::store2_interleave(dst_ptr + (iw * 2), r0, r0);
simd_helper::store2_interleave(dst_ptr + (OW + iw * 2), r0, r0);
}
for (; iw < IW; iw += 1) {
ctype v = src_ptr[iw];
dst_ptr[iw * 2] = v;
dst_ptr[iw * 2 + 1] = v;
dst_ptr[OW + iw * 2] = v;
dst_ptr[OW + iw * 2 + 1] = v;
}
src_ptr += IW;
dst_ptr += 2 * OW;
}
}
}
} // namespace
void megdnn::fallback::resize_linear_upsample2_nchw_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
linear_upsample2_nchw(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c,
kern_param.ih, kern_param.iw);
}
void megdnn::fallback::resize_nearest_upsample2_nchw_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
nearest_upsample2_nchw(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c,
kern_param.ih, kern_param.iw);
}
#pragma once
#include "src/fallback/resize/gi/helper.h"
namespace megdnn {
namespace fallback {
void resize_linear_upsample2_nchw_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
void resize_nearest_upsample2_nchw_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
} // namespace fallback
} // namespace megdnn
#include "src/fallback/resize/gi/upsample2_nchwxx.h"
using namespace megdnn;
using namespace fallback;
using namespace resize;
namespace {
template <typename simd_helper, size_t fh, size_t fw>
static GI_FORCEINLINE typename simd_helper::simd_type compute_linear_element(
const typename simd_helper::simd_type src[4],
const typename simd_helper::simd_type alpha[2][2]) {
typename simd_helper::simd_type c = simd_helper::dup(0);
c = simd_helper::fma(c, src[0], alpha[0 ^ fh][0 ^ fw]);
c = simd_helper::fma(c, src[1], alpha[0 ^ fh][1 ^ fw]);
c = simd_helper::fma(c, src[2], alpha[1 ^ fh][0 ^ fw]);
c = simd_helper::fma(c, src[3], alpha[1 ^ fh][1 ^ fw]);
return c;
}
template <typename simd_helper, bool has_right, bool has_bottom>
static GI_FORCEINLINE void compute_linear_2x2_element(
const typename simd_helper::ctype* src, typename simd_helper::ctype* dst,
size_t IW, size_t OW, const typename simd_helper::simd_type alpha[2][2]) {
constexpr size_t PC = simd_helper::simd_width;
const typename simd_helper::ctype* src_ptr[4] = {src, src, src, src};
if (has_right) {
src_ptr[1] += PC;
src_ptr[3] += PC;
}
if (has_bottom) {
src_ptr[2] += IW * PC;
src_ptr[3] += IW * PC;
}
typename simd_helper::simd_type rsrc[4];
rsrc[0] = simd_helper::load(src_ptr[0]);
rsrc[1] = simd_helper::load(src_ptr[1]);
rsrc[2] = simd_helper::load(src_ptr[2]);
rsrc[3] = simd_helper::load(src_ptr[3]);
typename simd_helper::simd_type rdst[4];
rdst[0] = compute_linear_element<simd_helper, 0, 0>(rsrc, alpha);
rdst[1] = compute_linear_element<simd_helper, 0, 1>(rsrc, alpha);
rdst[2] = compute_linear_element<simd_helper, 1, 0>(rsrc, alpha);
rdst[3] = compute_linear_element<simd_helper, 1, 1>(rsrc, alpha);
simd_helper::store(dst, rdst[0]);
if (has_right) {
simd_helper::store(dst + PC, rdst[1]);
}
if (has_bottom) {
simd_helper::store(dst + OW * PC, rdst[2]);
}
if (has_right && has_bottom) {
simd_helper::store(dst + (OW + 1) * PC, rdst[3]);
}
}
template <typename ctype>
void linear_upsample2_nchwxx(
const ctype* src_ptr, ctype* dst_ptr, size_t N, size_t IH, size_t IW) {
using simd_helper = SIMDHelper<ctype>;
size_t OW = IW * 2;
constexpr size_t PC = simd_helper::simd_width;
typename simd_helper::simd_type alpha[2][2];
alpha[0][0] = simd_helper::dup(0.75 * 0.75);
alpha[0][1] = simd_helper::dup(0.75 * 0.25);
alpha[1][0] = simd_helper::dup(0.25 * 0.75);
alpha[1][1] = simd_helper::dup(0.25 * 0.25);
for (size_t i = 0; i < N; ++i) {
compute_linear_2x2_element<simd_helper, false, false>(
src_ptr, dst_ptr, IW, OW, alpha);
{
for (size_t iw = 0; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<simd_helper, true, false>(
src_ptr + iw * PC, dst_ptr + (iw * 2 + 1) * PC, IW, OW, alpha);
}
}
compute_linear_2x2_element<simd_helper, false, false>(
src_ptr + (IW - 1) * PC, dst_ptr + (OW - 1) * PC, IW, OW, alpha);
dst_ptr += OW * PC;
for (size_t ih = 0; ih + 1 < IH; ++ih) {
compute_linear_2x2_element<simd_helper, false, true>(
src_ptr, dst_ptr, IW, OW, alpha);
for (size_t iw = 0; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<simd_helper, true, true>(
src_ptr + iw * PC, dst_ptr + (iw * 2 + 1) * PC, IW, OW, alpha);
}
compute_linear_2x2_element<simd_helper, false, true>(
src_ptr + (IW - 1) * PC, dst_ptr + (OW - 1) * PC, IW, OW, alpha);
src_ptr += IW * PC;
dst_ptr += 2 * OW * PC;
}
compute_linear_2x2_element<simd_helper, false, false>(
src_ptr, dst_ptr, IW, OW, alpha);
{
for (size_t iw = 0; iw + 1 < IW; ++iw) {
compute_linear_2x2_element<simd_helper, true, false>(
src_ptr + iw * PC, dst_ptr + (iw * 2 + 1) * PC, IW, OW, alpha);
}
}
compute_linear_2x2_element<simd_helper, false, false>(
src_ptr + (IW - 1) * PC, dst_ptr + (OW - 1) * PC, IW, OW, alpha);
src_ptr += IW * PC;
dst_ptr += OW * PC;
}
}
template <typename ctype>
void nearest_upsample2_nchwxx(
const ctype* src_ptr, ctype* dst_ptr, size_t N, size_t IH, size_t IW) {
using simd_helper = SIMDHelper<ctype>;
size_t OW = IW * 2;
constexpr size_t PC = simd_helper::simd_width;
for (size_t i = 0; i < N; ++i) {
for (size_t ih = 0; ih < IH; ++ih) {
for (size_t iw = 0; iw < IW; ++iw) {
typename simd_helper::simd_type r0 =
simd_helper::load(src_ptr + iw * PC);
simd_helper::store(dst_ptr + (iw * 2) * PC, r0);
simd_helper::store(dst_ptr + (iw * 2 + 1) * PC, r0);
simd_helper::store(dst_ptr + (OW + iw * 2) * PC, r0);
simd_helper::store(dst_ptr + (OW + iw * 2 + 1) * PC, r0);
}
src_ptr += IW * PC;
dst_ptr += 2 * OW * PC;
}
}
}
} // namespace
void megdnn::fallback::resize_linear_upsample2_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
linear_upsample2_nchwxx(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c / 4,
kern_param.ih, kern_param.iw);
}
void megdnn::fallback::resize_nearest_upsample2_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param) {
nearest_upsample2_nchwxx(
kern_param.src(), kern_param.dst(), kern_param.n * kern_param.c / 4,
kern_param.ih, kern_param.iw);
}
#pragma once
#include "src/fallback/resize/gi/helper.h"
namespace megdnn {
namespace fallback {
void resize_linear_upsample2_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
void resize_nearest_upsample2_nchw44_gi_fp32(
const ResizeImpl::KernParam<float>& kern_param);
} // namespace fallback
} // namespace megdnn
......@@ -15,6 +15,14 @@
#include "src/common/rounding_converter.cuh"
#include "src/fallback/handle.h"
#include "src/fallback/resize/gi/direct_nchwxx.h"
#include "src/fallback/resize/gi/resize_cv.h"
#include "src/fallback/resize/gi/upsample2_nchw.h"
#include "src/fallback/resize/gi/upsample2_nchwxx.h"
#include "midout.h"
MIDOUT_DECL(megdnn_fallback_resize)
using namespace megdnn;
using namespace fallback;
......@@ -108,6 +116,11 @@ void ResizeImpl::kern_fallback_nhwc(const KernParam<ctype>& kern_param) {
void ResizeImpl::exec(
_megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_workspace workspace) {
check_exec(src.layout, dst.layout, workspace.size);
exec_gi(src, dst, workspace);
}
void ResizeImpl::exec_fallback(
_megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_workspace workspace) {
if (param().format == param::Resize::Format::NCHW4 ||
param().format == param::Resize::Format::NCHW44 ||
param().format == param::Resize::Format::NCHW88 ||
......@@ -148,4 +161,92 @@ void ResizeImpl::exec(
naive::ResizeImpl::exec(src, dst, workspace);
}
void ResizeImpl::exec_gi(
_megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_workspace workspace) {
bool is_contiguous = src.layout.is_contiguous() && dst.layout.is_contiguous();
bool is_dtype_same = src.layout.dtype == dst.layout.dtype;
bool is_dtype_fp32 = src.layout.dtype == dtype::Float32();
bool is_dtype_supported = is_dtype_same && is_dtype_fp32;
bool is_nchw_fp32 = param().format == param::Resize::Format::NCHW && is_dtype_fp32;
bool is_nchw44_fp32 =
param().format == param::Resize::Format::NCHW44 && is_dtype_fp32;
bool is_imode_nearest =
param().imode == param::Resize::InterpolationMode::INTER_NEAREST;
bool is_imode_linear =
param().imode == param::Resize::InterpolationMode::INTER_LINEAR;
bool is_imode_supported = is_imode_nearest || is_imode_linear;
bool is_upsample2 = src.layout.shape[2] * 2 == dst.layout.shape[2] &&
src.layout.shape[3] * 2 == dst.layout.shape[3];
bool usable = is_contiguous && is_dtype_supported && is_imode_supported;
if (param().format == param::Resize::Format::NHWC &&
(src.layout[3] == 1 || src.layout[3] == 3) && is_nhwc_contig_wc(src.layout) &&
is_dtype_fp32) {
MEGDNN_DISPATCH_CPU_KERN_OPR(resize_cv_gi_exec(src, dst, param().imode));
} else if (!usable) {
exec_fallback(src, dst, workspace);
} else if (is_dtype_fp32) {
auto kern_param = KernParam<float>::from_tensors(
param().format, param().imode, src, dst, workspace);
if (is_nchw44_fp32) {
if (is_upsample2) {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(0)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_nearest_upsample2_nchw44_gi_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(1)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_linear_upsample2_nchw44_gi_fp32(kern_param));
}
MIDOUT_END();
}
} else {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(2)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_direct_nearest_nchw44_gi_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(3)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_direct_linear_nchw44_gi_fp32(kern_param));
}
MIDOUT_END();
}
}
} else if (is_nchw_fp32) {
if (is_upsample2) {
if (is_imode_nearest) {
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(4)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_nearest_upsample2_nchw_gi_fp32(kern_param));
}
MIDOUT_END();
} else {
megdnn_assert(is_imode_linear, "invalid imode");
MIDOUT_BEGIN(megdnn_fallback_resize, midout_iv(5)) {
MEGDNN_DISPATCH_CPU_KERN_OPR(
resize_linear_upsample2_nchw_gi_fp32(kern_param));
}
MIDOUT_END();
}
} else {
exec_fallback(src, dst, workspace);
}
} else {
exec_fallback(src, dst, workspace);
}
} else {
exec_fallback(src, dst, workspace);
}
}
// vim: syntax=cpp.doxygen
// vim: syntax=cpp.doxygen
......@@ -35,6 +35,11 @@ private:
template <typename ctype>
void kern_fallback_nhwc(const KernParam<ctype>& kern_param);
void exec_fallback(
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace);
void exec_gi(
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace);
}; // class ResizeImpl
} // namespace fallback
......
......@@ -358,6 +358,21 @@ TEST_F(FALLBACK, GiLoadFloat32) {
assert_eq((float*)&ret, naive);
}
TEST_F(FALLBACK, GiLoadFloat32V2) {
GI_FLOAT32_V2_t ret;
std::vector<float> s0{2.3f, 4.7f, -1.4f, 1223.6f, 1.1f, 4.0f, 99.7f, 1234.9f};
s0.resize(SIMD_LEN * 2);
ret = GiLoadFloat32V2(s0.data());
std::vector<float> naive;
for (size_t i = 0; i < SIMD_LEN * 2; i++) {
naive.push_back(s0[i]);
}
assert_eq((float*)&ret, naive, SIMD_LEN * 2);
}
TEST_F(FALLBACK, GiLoadFloat32LowHalf) {
GI_FLOAT32_t ret;
std::vector<float> s0{2.3f, 4.7f, -1.4f, 1223.6f};
......@@ -701,6 +716,18 @@ TEST_F(FALLBACK, GiStoreFloat32) {
assert_eq(ret.data(), s0);
}
TEST_F(FALLBACK, GiStoreFloat32V2) {
GI_FLOAT32_V2_t src0;
std::vector<float> s0{1.1f, 2.2f, 3.5f, 4.9f, -1.1f, -2.2f, -3.5f, -4.9};
s0.resize(SIMD_LEN * 2);
init((float*)&src0, s0, SIMD_LEN * 2);
std::vector<float> ret{0};
ret.resize(SIMD_LEN * 2);
GiStoreFloat32V2(ret.data(), src0);
assert_eq(ret.data(), s0, SIMD_LEN * 2);
}
TEST_F(FALLBACK, GiStoreLaneXXFloat32) {
GI_FLOAT32_t src0;
std::vector<float> s0{1.1f, 2.2f, 3.5f, 4.9f};
......@@ -1226,7 +1253,7 @@ TEST_F(FALLBACK, GiBSLFloat32) {
naive.resize(SIMD_LEN);
memcpy(naive.data(), &na, sizeof(GI_FLOAT32_t));
assert_eq((float*)&ret, naive);
assert_eq_and_nan((float*)&ret, naive);
}
}
......@@ -3199,6 +3226,65 @@ TEST_F(FALLBACK, GiPmaxFloat32) {
ASSERT_LT(std::abs(naive[1] - r[1]), 1e-3);
}
TEST_F(FALLBACK, GiStoreZipFloat32V2) {
GI_FLOAT32_V2_t src0;
std::vector<float> s0{1.1f, 2.2f, 3.5f, 4.9f, 2312.1f, 345.244f, 3.59f, -12.8f};
s0.resize(SIMD_LEN * 2);
init((float*)&src0, s0, SIMD_LEN * 2);
std::vector<float> ret;
ret.resize(SIMD_LEN * 2);
std::vector<float> ret_cmp;
ret_cmp.resize(SIMD_LEN * 2);
GiStoreZipFloat32V2(ret.data(), src0);
GI_FLOAT32_V2_t tmp;
tmp = GiZipqFloat32(src0.val[0], src0.val[1]);
GiStoreFloat32(ret_cmp.data(), tmp.val[0]);
GiStoreFloat32(ret_cmp.data() + SIMD_LEN, tmp.val[1]);
assert_eq(ret.data(), ret_cmp, SIMD_LEN * 2);
}
TEST_F(FALLBACK, GiLoadUzipFloat32V3) {
GI_FLOAT32_V3_t ret;
std::vector<float> s0{1.1f, 2.2f, 3.5f, 4.9f, 2312.1f, 345.244f,
3.59f, -12.8f, 2.2f, 6.0f, 90.0f, 89.3f};
s0.resize(SIMD_LEN * 3);
ret = GiLoadUzipFloat32V3(s0.data());
std::vector<float> naive;
for (size_t i = 0; i < 3; i++) {
naive.push_back(s0[0 + i]);
naive.push_back(s0[3 + i]);
naive.push_back(s0[6 + i]);
naive.push_back(s0[9 + i]);
}
assert_eq((float*)&ret, naive);
}
TEST_F(FALLBACK, GiStoreZipFloat32V3) {
GI_FLOAT32_V3_t src0;
std::vector<float> s0{1.1f, 2.2f, 3.5f, 4.9f, 2312.1f, 345.244f,
3.59f, -12.8f, 3.59f, -12.8f, 2.2f, 6.0};
s0.resize(SIMD_LEN * 3);
init((float*)&src0, s0, SIMD_LEN * 3);
std::vector<float> ret;
ret.resize(SIMD_LEN * 3);
GiStoreZipFloat32V3(ret.data(), src0);
std::vector<float> ret_cmp;
for (size_t i = 0; i < SIMD_LEN; i++) {
ret_cmp.push_back(s0[0 + i]);
ret_cmp.push_back(s0[4 + i]);
ret_cmp.push_back(s0[8 + i]);
}
assert_eq(ret.data(), ret_cmp, SIMD_LEN * 3);
}
} // namespace test
} // namespace megdnn
......
......@@ -167,6 +167,48 @@ TEST_F(FALLBACK, RESIZE_NCHW4_RECORD) {
}
}
namespace {
static void set_nchw_args(resize::IMode imode, std::vector<resize::TestArg>& args) {
param::Resize param;
param.format = param::Resize::Format::NCHW;
param.imode = imode;
rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul)
args.emplace_back(
param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul},
TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul});
args.emplace_back(param, TensorShape{1, 1, 10, 10}, TensorShape{1, 1, 20, 20});
args.emplace_back(param, TensorShape{1, 1, 10, 10}, TensorShape{1, 1, 7, 9});
args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 2, 6, 8});
args.emplace_back(param, TensorShape{1, 2, 6, 8}, TensorShape{1, 2, 3, 4});
}
} // namespace
TEST_F(FALLBACK, RESIZE_NCHW_FP32) {
std::vector<resize::TestArg> args;
set_nchw_args(resize::IMode::INTER_LINEAR, args);
set_nchw_args(resize::IMode::INTER_NEAREST, args);
Checker<Resize> checker(handle());
for (auto&& arg : args) {
checker.set_param(arg.param)
.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.execs({arg.src, arg.dst});
}
}
TEST_F(FALLBACK, RESIZE_NCHW44_FP32) {
std::vector<resize::TestArg> args = resize::get_nchw44_args();
Checker<Resize> checker(handle());
for (auto&& arg : args) {
checker.set_param(arg.param)
.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.execs({arg.src, arg.dst});
}
}
} // namespace test
} // namespace megdnn
// vim: syntax=cpp.doxygen
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册