Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
e6715910
MegEngine
项目概览
MegEngine 天元
/
MegEngine
接近 2 年 前同步成功
通知
414
Star
4708
Fork
583
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
e6715910
编写于
9月 15, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
docs(mge/imperative): add docstring for GradManager
GitOrigin-RevId: 4c326206b83f7fb40f43ba3487bc76316440e1f8
上级
ce55fbf6
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
66 addition
and
0 deletion
+66
-0
imperative/python/megengine/autodiff/grad_manager.py
imperative/python/megengine/autodiff/grad_manager.py
+66
-0
未找到文件。
imperative/python/megengine/autodiff/grad_manager.py
浏览文件 @
e6715910
...
...
@@ -14,6 +14,51 @@ def get_backwarding_grad_manager():
class
GradManager
:
r
"""GradManager manages auto differentiation and all resources required to perform it.
Our auto differentiation framework requires that the user explicitly indicates when
the forward operations start and when all resources should be released. A typical usage of
GradManager is as follows:
.. codeblock::
gm = GradManager()
gm.attach(model.parameters())
with gm:
# forward operations
...
# backward gradients
gm.backward(loss)
You can also use `record()` and `release()` method instead of `with` context:
.. codeblock::
gm = GradManager()
gm.attach(model.parameters())
gm.record()
# forward operations
...
# backward gradients
gm.backward(loss)
gm.release()
Typically, in data parallel, we would like to average the gradients across
processes. Users will finally get the averaged gradients if an "AllReduce"
callback is registered as follows:
.. codeblock::
import megengine.distributed as dist
gm = GradManager()
gm.attach(model.parameters(), callback=dist.make_allreduce_cb("MEAN"))
"""
def
__init__
(
self
):
self
.
_call_back_dict
=
defaultdict
(
list
)
self
.
_param_dict
=
dict
()
...
...
@@ -23,6 +68,18 @@ class GradManager:
self
.
_gradients
=
dict
()
def
attach
(
self
,
params
,
callbacks
=
None
):
r
"""Registers parameters that gradients should be calculated with respect to.
Callback Functions should have a signature like this:
.. codeblock::
def cb(param: Tensor, grad: Tensor) -> Tensor:
# do something
return grad
:param params: registered parameters
:param callbacks: list of callback functions
"""
if
callbacks
is
None
:
callbacks
=
[]
if
isinstance
(
callbacks
,
Callable
):
...
...
@@ -38,6 +95,11 @@ class GradManager:
return
self
def
backward
(
self
,
ys
,
dys
=
None
):
r
"""Performs back-propagation and computes gradients.
:param ys: outputs of forward operators, e.g., the loss tensor
:param dys: derivatives of ys
"""
global
backwarding_grad_manager
cache
=
backwarding_grad_manager
backwarding_grad_manager
=
self
...
...
@@ -71,6 +133,8 @@ class GradManager:
backwarding_grad_manager
=
cache
def
record
(
self
):
r
"""Starts recording forward operations.
"""
if
self
.
_recording
:
raise
RuntimeError
(
"already recording"
)
grad
=
Grad
()
...
...
@@ -90,6 +154,8 @@ class GradManager:
grad
.
__enter__
()
def
release
(
self
):
r
"""Stops recording and releases resources for gradients calculation.
"""
if
not
self
.
_recording
:
raise
RuntimeError
(
"not recording"
)
self
.
_stop_record
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录