提交 e1b2d31d 编写于 作者: M Megvii Engine Team

test(mge): skip some doctests having different results on gpu

GitOrigin-RevId: 66e5db5c891ca7373bd642a79974fef4c4a8ae03
上级 20b67b29
...@@ -741,11 +741,11 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: ...@@ -741,11 +741,11 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor:
.. testcode:: .. testcode::
import numpy as np import numpy as np
from megengine import tensor import megengine as mge
import megengine.functional as F import megengine.functional as F
from megengine.random import manual_seed from megengine import tensor
manual_seed(0)
data = tensor(np.ones(10, dtype=np.float32)) data = tensor(np.ones(10, dtype=np.float32))
out = F.dropout(data, 1./3.) out = F.dropout(data, 1./3.)
print(out.numpy()) print(out.numpy())
...@@ -753,6 +753,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: ...@@ -753,6 +753,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor:
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +SKIP
[1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5]
......
...@@ -249,6 +249,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: ...@@ -249,6 +249,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
import numpy as np import numpy as np
import megengine.functional as F import megengine.functional as F
from megengine.core import tensor from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,0,1,2]]) index = tensor([[0,2,0,2,1],[2,0,0,1,2]])
...@@ -258,6 +259,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: ...@@ -258,6 +259,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +SKIP
[[0.9935 0.0718 0.5939 0. 0. ] [[0.9935 0.0718 0.5939 0. 0. ]
[0. 0. 0. 0.357 0.4396] [0. 0. 0. 0.357 0.4396]
......
...@@ -115,7 +115,7 @@ class Conv2d(_ConvNd): ...@@ -115,7 +115,7 @@ class Conv2d(_ConvNd):
and there would be an extra dimension at the beginning of the weight's and there would be an extra dimension at the beginning of the weight's
shape. Specifically, the shape of weight would be ``(groups, shape. Specifically, the shape of weight would be ``(groups,
out_channel // groups, in_channels // groups, *kernel_size)``. out_channel // groups, in_channels // groups, *kernel_size)``.
:param bias: wether to add a bias onto the result of convolution. Default: :param bias: whether to add a bias onto the result of convolution. Default:
True True
:param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default:
`CROSS_CORRELATION`. `CROSS_CORRELATION`.
......
...@@ -42,11 +42,11 @@ def gaussian( ...@@ -42,11 +42,11 @@ def gaussian(
import megengine as mge import megengine as mge
import megengine.random as rand import megengine.random as rand
rand.manual_seed(0)
x = rand.gaussian((2, 2), mean=0, std=1) x = rand.gaussian((2, 2), mean=0, std=1)
print(x.numpy()) print(x.numpy())
.. testoutput:: .. testoutput::
:options: +SKIP
[[-0.20235455 -0.6959438 ] [[-0.20235455 -0.6959438 ]
[-1.4939808 -1.5824696 ]] [-1.4939808 -1.5824696 ]]
...@@ -79,11 +79,11 @@ def uniform( ...@@ -79,11 +79,11 @@ def uniform(
import megengine as mge import megengine as mge
import megengine.random as rand import megengine.random as rand
rand.manual_seed(0)
x = rand.uniform((2, 2)) x = rand.uniform((2, 2))
print(x.numpy()) print(x.numpy())
.. testoutput:: .. testoutput::
:options: +SKIP
[[0.76901674 0.70496535] [[0.76901674 0.70496535]
[0.09365904 0.62957656]] [0.09365904 0.62957656]]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册