diff --git a/python_module/megengine/functional/nn.py b/python_module/megengine/functional/nn.py index 2fe462a5873b91e22a64f8d01fb644e766c501d9..a194d9c656eb9ead3ec9ad92c377a8366b4076de 100644 --- a/python_module/megengine/functional/nn.py +++ b/python_module/megengine/functional/nn.py @@ -741,11 +741,11 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: .. testcode:: import numpy as np - from megengine import tensor + import megengine as mge + import megengine.functional as F - from megengine.random import manual_seed + from megengine import tensor - manual_seed(0) data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) @@ -753,6 +753,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: Outputs: .. testoutput:: + :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] diff --git a/python_module/megengine/functional/tensor.py b/python_module/megengine/functional/tensor.py index 570bd27f74189f885e6303a683bf51948e9803c7..270604cc0d468b220b0f1dc94a3e5b33825ac65f 100644 --- a/python_module/megengine/functional/tensor.py +++ b/python_module/megengine/functional/tensor.py @@ -249,6 +249,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: import numpy as np import megengine.functional as F from megengine.core import tensor + inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) index = tensor([[0,2,0,2,1],[2,0,0,1,2]]) @@ -258,6 +259,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: Outputs: .. testoutput:: + :options: +SKIP [[0.9935 0.0718 0.5939 0. 0. ] [0. 0. 0. 0.357 0.4396] @@ -314,9 +316,9 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: r""" Select elements either from Tensor x or Tensor y, according to mask. - + .. math:: - + \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i :param mask: a mask used for choosing x or y diff --git a/python_module/megengine/module/conv.py b/python_module/megengine/module/conv.py index 1d10db1679549a7cbc14ee233997dea39bd6bb50..79c374cb84c7eb2f4176257e26c70231ffcb6575 100644 --- a/python_module/megengine/module/conv.py +++ b/python_module/megengine/module/conv.py @@ -115,7 +115,7 @@ class Conv2d(_ConvNd): and there would be an extra dimension at the beginning of the weight's shape. Specifically, the shape of weight would be ``(groups, out_channel // groups, in_channels // groups, *kernel_size)``. - :param bias: wether to add a bias onto the result of convolution. Default: + :param bias: whether to add a bias onto the result of convolution. Default: True :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: `CROSS_CORRELATION`. diff --git a/python_module/megengine/random/distribution.py b/python_module/megengine/random/distribution.py index cd5130ab097c91037982e3e8cee83893515047e2..1d3882cc1ad988e935fe1a52f414f74eb32022e2 100644 --- a/python_module/megengine/random/distribution.py +++ b/python_module/megengine/random/distribution.py @@ -42,11 +42,11 @@ def gaussian( import megengine as mge import megengine.random as rand - rand.manual_seed(0) x = rand.gaussian((2, 2), mean=0, std=1) print(x.numpy()) .. testoutput:: + :options: +SKIP [[-0.20235455 -0.6959438 ] [-1.4939808 -1.5824696 ]] @@ -79,11 +79,11 @@ def uniform( import megengine as mge import megengine.random as rand - rand.manual_seed(0) x = rand.uniform((2, 2)) print(x.numpy()) .. testoutput:: + :options: +SKIP [[0.76901674 0.70496535] [0.09365904 0.62957656]]