提交 dcfb6a53 编写于 作者: M Megvii Engine Team

refactor(mge/functional): move functional api

GitOrigin-RevId: 9cd3e09996f77a00e114f0870eae55ad80b4ba8b
上级 bfb9def9
...@@ -19,7 +19,7 @@ from megengine.device import get_default_device, get_device_count ...@@ -19,7 +19,7 @@ from megengine.device import get_default_device, get_device_count
from ..core._imperative_rt.core2 import apply from ..core._imperative_rt.core2 import apply
from ..core.ops.builtin import ParamPackConcat, ParamPackSplit from ..core.ops.builtin import ParamPackConcat, ParamPackSplit
from ..functional.utils import copy from ..functional.tensor import copy
from ..tensor import Tensor from ..tensor import Tensor
from ..utils.future import Future from ..utils.future import Future
from .functional import all_reduce_sum, broadcast from .functional import all_reduce_sum, broadcast
......
...@@ -7,12 +7,11 @@ ...@@ -7,12 +7,11 @@
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# pylint: disable=redefined-builtin # pylint: disable=redefined-builtin
from . import metric, vision
from .elemwise import * from .elemwise import *
from .img_proc import *
from .math import * from .math import *
from .nn import * from .nn import *
from .tensor import * from .tensor import *
from .utils import *
from . import distributed # isort:skip from . import distributed # isort:skip
......
...@@ -7,8 +7,6 @@ ...@@ -7,8 +7,6 @@
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# pylint: disable=unused-argument,invalid-name,redefined-builtin,arguments-out-of-order # pylint: disable=unused-argument,invalid-name,redefined-builtin,arguments-out-of-order
import functools
import numpy as np import numpy as np
from ..core._imperative_rt.core2 import apply from ..core._imperative_rt.core2 import apply
...@@ -17,7 +15,7 @@ from ..core.ops import builtin ...@@ -17,7 +15,7 @@ from ..core.ops import builtin
from ..core.ops.builtin import Elemwise from ..core.ops.builtin import Elemwise
from ..core.tensor import utils from ..core.tensor import utils
from ..core.tensor.array_method import _elwise_apply from ..core.tensor.array_method import _elwise_apply
from ..core.tensor.utils import astype, isscalar, setscalar from ..core.tensor.utils import astype
from ..device import get_default_device from ..device import get_default_device
from ..jit.tracing import is_tracing from ..jit.tracing import is_tracing
from ..tensor import Tensor from ..tensor import Tensor
...@@ -44,8 +42,6 @@ __all__ = [ ...@@ -44,8 +42,6 @@ __all__ = [
"floor_div", "floor_div",
"greater", "greater",
"greater_equal", "greater_equal",
"hswish",
"hsigmoid",
"left_shift", "left_shift",
"less", "less",
"less_equal", "less_equal",
...@@ -62,11 +58,8 @@ __all__ = [ ...@@ -62,11 +58,8 @@ __all__ = [
"neg", "neg",
"not_equal", "not_equal",
"pow", "pow",
"relu",
"relu6",
"right_shift", "right_shift",
"round", "round",
"sigmoid",
"sin", "sin",
"sinh", "sinh",
"sqrt", "sqrt",
...@@ -523,53 +516,6 @@ def greater_equal(x, y): ...@@ -523,53 +516,6 @@ def greater_equal(x, y):
# other functions # other functions
def hswish(x):
"""
Element-wise `x * relu6(x + 3) / 6`.
:param x: input tensor.
:return: computed tensor.
Example:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(5).astype(np.float32))
out = F.hswish(x)
print(out.numpy().round(decimals=4))
.. testoutput::
[0. 0.6667 1.6667 3. 4. ]
"""
return _elwise(x, mode=Elemwise.Mode.H_SWISH)
def hsigmoid(x):
"""Element-wise `relu6(x + 3) / 6`."""
return relu6(x + 3) / 6
def relu(x):
"""Element-wise `max(x, 0)`."""
return _elwise(x, mode=Elemwise.Mode.RELU)
def relu6(x):
"""Element-wise `min(max(x, 0), 6)`."""
return minimum(maximum(x, 0), 6)
def sigmoid(x):
"""Element-wise `1 / ( 1 + exp( -x ) )`."""
return _elwise(x, mode=Elemwise.Mode.SIGMOID)
def clip(x: Tensor, lower=None, upper=None) -> Tensor: def clip(x: Tensor, lower=None, upper=None) -> Tensor:
r""" r"""
Clamps all elements in input tensor into the range `[` :attr:`lower`, :attr:`upper` `]` and returns Clamps all elements in input tensor into the range `[` :attr:`lower`, :attr:`upper` `]` and returns
......
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from ..core._imperative_rt.core2 import apply
from ..core.ops import builtin
from ..tensor import Tensor
__all__ = [
"cvt_color",
]
def cvt_color(inp: Tensor, mode: str = ""):
r"""
Convert images from one format to another
:param inp: input images.
:param mode: format mode.
:return: convert result.
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.functional as F
x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32))
y = F.img_proc.cvt_color(x, mode="RGB2GRAY")
print(y.numpy())
Outputs:
.. testoutput::
[[[[0.86555195]]]]
"""
assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color"
mode = getattr(builtin.CvtColor.Mode, mode)
assert isinstance(mode, builtin.CvtColor.Mode)
op = builtin.CvtColor(mode=mode)
(out,) = apply(op, inp)
return out
...@@ -8,10 +8,9 @@ ...@@ -8,10 +8,9 @@
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np import numpy as np
from ..core.tensor.utils import make_shape_tuple
from ..tensor import Tensor from ..tensor import Tensor
from .elemwise import abs, equal, exp, log, maximum, pow, relu from .elemwise import abs, log
from .nn import indexing_one_hot, logsigmoid, logsumexp from .nn import indexing_one_hot, logsigmoid, logsumexp, relu
from .tensor import where from .tensor import where
__all__ = [ __all__ = [
......
...@@ -7,9 +7,7 @@ ...@@ -7,9 +7,7 @@
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import collections import collections
import functools
import math import math
import numbers
from typing import Optional, Sequence, Tuple, Union from typing import Optional, Sequence, Tuple, Union
from ..core._imperative_rt.core2 import apply from ..core._imperative_rt.core2 import apply
......
...@@ -6,23 +6,14 @@ ...@@ -6,23 +6,14 @@
# Unless required by applicable law or agreed to in writing, # Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import collections
from typing import Iterable, Union from typing import Iterable, Union
import numpy as np import numpy as np
from ..core._imperative_rt.core2 import apply
from ..core._wrap import device as as_device
from ..core.ops.builtin import Copy, Identity
from ..tensor import Tensor from ..tensor import Tensor
from .math import topk as _topk from .math import topk as _topk
from .tensor import broadcast_to, transpose from .tensor import broadcast_to, transpose
__all__ = [
"topk_accuracy",
"copy",
]
def topk_accuracy( def topk_accuracy(
logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1
...@@ -46,7 +37,7 @@ def topk_accuracy( ...@@ -46,7 +37,7 @@ def topk_accuracy(
logits = tensor(np.arange(80, dtype=np.int32).reshape(8,10)) logits = tensor(np.arange(80, dtype=np.int32).reshape(8,10))
target = tensor(np.arange(8, dtype=np.int32)) target = tensor(np.arange(8, dtype=np.int32))
top1, top5 = F.topk_accuracy(logits, target, (1, 5)) top1, top5 = F.metric.topk_accuracy(logits, target, (1, 5))
print(top1.numpy(), top5.numpy()) print(top1.numpy(), top5.numpy())
Outputs: Outputs:
...@@ -67,33 +58,3 @@ def topk_accuracy( ...@@ -67,33 +58,3 @@ def topk_accuracy(
if len(topk) == 1: # type: ignore[arg-type] if len(topk) == 1: # type: ignore[arg-type]
accs = accs[0] accs = accs[0]
return accs return accs
def copy(inp, device=None):
r"""
Copies tensor to another device.
:param inp: input tensor.
:param device: destination device.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor([1, 2, 3], np.int32)
y = F.copy(x, "xpu1")
print(y.numpy())
Outputs:
.. testoutput::
[1 2 3]
"""
if device is None:
return apply(Identity(), inp)[0]
return apply(Copy(comp_node=as_device(device).to_c()), inp)[0]
...@@ -6,10 +6,8 @@ ...@@ -6,10 +6,8 @@
# Unless required by applicable law or agreed to in writing, # Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
import math import math
from itertools import accumulate from typing import Iterable, Optional, Sequence, Union
from typing import Iterable, List, Optional, Sequence, Tuple, Union
import numpy as np import numpy as np
...@@ -17,6 +15,7 @@ from ..core._imperative_rt import CompNode ...@@ -17,6 +15,7 @@ from ..core._imperative_rt import CompNode
from ..core._imperative_rt.core2 import apply from ..core._imperative_rt.core2 import apply
from ..core._wrap import device as as_device from ..core._wrap import device as as_device
from ..core.ops import builtin from ..core.ops import builtin
from ..core.ops.builtin import Copy, Identity
from ..core.ops.special import Const from ..core.ops.special import Const
from ..core.tensor.array_method import _broadcast, _remove_axis from ..core.tensor.array_method import _broadcast, _remove_axis
from ..core.tensor.utils import ( from ..core.tensor.utils import (
...@@ -51,6 +50,7 @@ __all__ = [ ...@@ -51,6 +50,7 @@ __all__ = [
"stack", "stack",
"scatter", "scatter",
"tile", "tile",
"copy",
"transpose", "transpose",
"where", "where",
"zeros", "zeros",
...@@ -1130,3 +1130,33 @@ def tile(inp: Tensor, reps: Iterable[int]): ...@@ -1130,3 +1130,33 @@ def tile(inp: Tensor, reps: Iterable[int]):
inp = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) inp = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape)
return inp return inp
def copy(inp, device=None):
r"""
Copies tensor to another device.
:param inp: input tensor.
:param device: destination device.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor([1, 2, 3], np.int32)
y = F.copy(x, "xpu1")
print(y.numpy())
Outputs:
.. testoutput::
[1 2 3]
"""
if device is None:
return apply(Identity(), inp)[0]
return apply(Copy(comp_node=as_device(device).to_c()), inp)[0]
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from typing import Iterable, Optional, Tuple, Union
from ..core._imperative_rt.core2 import apply
from ..core.ops import builtin
from ..core.tensor import megbrain_graph, utils
from ..core.tensor.utils import astensor1d
from ..jit.tracing import is_tracing
from ..tensor import Tensor
from .elemwise import floor
from .math import argsort
from .tensor import broadcast_to, concat, expand_dims, reshape
def cvt_color(inp: Tensor, mode: str = ""):
r"""
Convert images from one format to another
:param inp: input images.
:param mode: format mode.
:return: convert result.
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.functional as F
x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32))
y = F.vision.cvt_color(x, mode="RGB2GRAY")
print(y.numpy())
Outputs:
.. testoutput::
[[[[0.86555195]]]]
"""
assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color"
mode = getattr(builtin.CvtColor.Mode, mode)
assert isinstance(mode, builtin.CvtColor.Mode)
op = builtin.CvtColor(mode=mode)
(out,) = apply(op, inp)
return out
def roi_pooling(
inp: Tensor,
rois: Tensor,
output_shape: Union[int, tuple, list],
mode: str = "max",
scale: float = 1.0,
) -> Tensor:
"""
Applies roi pooling on input feature.
:param inp: tensor that represents the input feature, `(N, C, H, W)` images.
:param rois: `(K, 5)` boxes. First column is the index into N. The other 4 columns are xyxy.
:param output_shape: `(height, width)` of output rois feature.
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "max"
:param scale: scale the input boxes by this number. Default: 1.0
:return: `(K, C, output_shape[0], output_shape[1])` feature of rois.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
np.random.seed(42)
inp = tensor(np.random.randn(1, 1, 128, 128))
rois = tensor(np.random.random((4, 5)))
y = F.vision.roi_pooling(inp, rois, (2, 2))
print(y.numpy()[0].round(decimals=4))
Outputs:
.. testoutput::
[[[-0.1383 -0.1383]
[-0.5035 -0.5035]]]
"""
assert mode in ["max", "average"], "only max/average mode is supported"
if isinstance(output_shape, int):
output_shape = (output_shape, output_shape)
op = builtin.ROIPooling(mode=mode, scale=scale)
inp, rois = utils.convert_inputs(inp, rois)
result, _ = apply(
op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device)
)
return result
def roi_align(
inp: Tensor,
rois: Tensor,
output_shape: Union[int, tuple, list],
mode: str = "average",
spatial_scale: float = 1.0,
sample_points: Union[int, tuple, list] = 2,
aligned: bool = True,
) -> Tensor:
"""
Applies roi align on input feature.
:param inp: tensor that represents the input feature, shape is `(N, C, H, W)`.
:param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``.
:param output_shape: `(height, width)` shape of output rois feature.
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average"
:param spatial_scale: scale the input boxes by this number. Default: 1.0
:param sample_points: number of inputs samples to take for each output sample.
0 to take samples densely. Default: 2
:param aligned: wheather to align the input feature, with `aligned=True`,
we first appropriately scale the ROI and then shift it by -0.5. Default: True
:return: output tensor.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
np.random.seed(42)
inp = tensor(np.random.randn(1, 1, 128, 128))
rois = tensor(np.random.random((4, 5)))
y = F.vision.roi_align(inp, rois, (2, 2))
print(y.numpy()[0].round(decimals=4))
Outputs:
.. testoutput::
[[[0.175 0.175 ]
[0.1359 0.1359]]]
"""
assert mode in ["max", "average"], "only max/average mode is supported"
if isinstance(output_shape, int):
output_shape = (output_shape, output_shape)
pooled_height, pooled_width = output_shape
if isinstance(sample_points, int):
sample_points = (sample_points, sample_points)
sample_height, sample_width = sample_points
offset = 0.5 if aligned else 0.0
op = builtin.ROIAlign(
mode=mode,
format="NCHW",
spatial_scale=spatial_scale,
offset=offset,
pooled_height=pooled_height,
pooled_width=pooled_width,
sample_height=sample_height,
sample_width=sample_width,
)
inp, rois = utils.convert_inputs(inp, rois)
result, *_ = apply(op, inp, rois)
return result
def nms(
boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None
) -> Tensor:
r"""
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU).
:param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format.
:param iou_thresh: IoU threshold for overlapping.
:param scores: tensor of shape `(N,)`, the score of boxes.
:param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced
otherwise it required to be specified; if it is not specified, all boxes are kept.
:return: indices of the elements that have been kept by NMS.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = np.zeros((100,4))
np.random.seed(42)
x[:,:2] = np.random.rand(100,2)*20
x[:,2:] = np.random.rand(100,2)*20 + 100
scores = tensor(np.random.rand(100))
inp = tensor(x)
result = F.vision.nms(inp, scores, iou_thresh=0.7)
print(result.numpy())
Outputs:
.. testoutput::
[75 69]
"""
assert (
boxes.ndim == 2 and boxes.shape[1] == 4
), "the expected shape of boxes is (N, 4)"
assert scores.ndim == 1, "the expected shape of scores is (N,)"
assert (
boxes.shape[0] == scores.shape[0]
), "number of boxes and scores are not matched"
boxes = boxes.detach()
scores = scores.detach()
sorted_idx = argsort(scores, descending=True)
boxes = boxes[sorted_idx]
if is_tracing():
assert (
max_output is not None and max_output > 0
), "max_output should be specified under tracing"
if max_output is None:
max_output = boxes.shape[0]
op = builtin.NMSKeep(iou_thresh, max_output)
inp = utils.convert_inputs(boxes.reshape(1, -1, 4))
indices, count = apply(op, *inp)
indices = indices[0][: count[0]]
keep_inds = sorted_idx[indices]
return keep_inds
def remap(
inp: Tensor,
map_xy: Tensor,
border_mode: str = "REPLICATE",
scalar: float = 0.0,
interp_mode: str = "LINEAR",
) -> Tensor:
r"""
Applies remap transformation to batched 2D images.
The input images are transformed to the output images by the tensor map_xy.
The output's H and W are same as map_xy's H and W.
:param inp: input image
:param map_xy: (batch, oh, ow, 2) transformation matrix
:param border_mode: pixel extrapolation method.
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT",
"REFLECT_101", "WRAP".
:param scalar: value used in case of a constant border. Default: 0
:param interp_mode: interpolation methods.
Default: "LINEAR". Currently only support "LINEAR" mode.
:return: output tensor.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
inp_shape = (1, 1, 4, 4)
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
map_xy_shape = (1, 2, 2, 2)
map_xy = tensor(np.array([[[1., 0.],[0., 1.]],
[[0., 1.],[0., 1.]]],
dtype=np.float32).reshape(map_xy_shape))
out = F.vision.remap(inp, map_xy)
print(out.numpy())
Outputs:
.. testoutput::
[[[[1. 4.]
[4. 4.]]]]
"""
op = builtin.Remap(
imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar
)
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type"
(result,) = apply(op, inp, map_xy)
return result
def warp_affine(
inp: Tensor,
weight: Tensor,
out_shape,
border_mode="REPLICATE",
border_val=0,
format="NHWC",
imode="LINEAR",
):
"""
Batched affine transform on 2D images.
:param inp: input image.
:param weight: weight tensor.
:param out_shape: output tensor shape.
:param border_mode: pixel extrapolation method.
Default: "WRAP". Currently "CONSTANT", "REFLECT",
"REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported.
:param border_val: value used in case of a constant border. Default: 0
:param format: "NHWC" as default based on historical concerns,
"NCHW" is also supported. Default: "NCHW".
:param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA".
Default: "LINEAR".
:return: output tensor.
.. note::
Here all available options for params are listed,
however it does not mean that you can use all the combinations.
On different platforms, different combinations are supported.
"""
op = builtin.WarpAffine(
border_mode=border_mode, border_val=border_val, format=format, imode=imode
)
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, weight, out_shape)
return result
def warp_perspective(
inp: Tensor,
M: Tensor,
dsize: Union[Tuple[int, int], int, Tensor],
border_mode: str = "REPLICATE",
border_val: float = 0.0,
interp_mode: str = "LINEAR",
) -> Tensor:
r"""
Applies perspective transformation to batched 2D images.
The input images are transformed to the output images by the transformation matrix:
.. math::
\text{output}(n, c, h, w) = \text{input} \left( n, c,
\frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}},
\frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}}
\right)
:param inp: input image.
:param M: `(batch, 3, 3)` transformation matrix.
:param dsize: `(h, w)` size of the output image.
:param border_mode: pixel extrapolation method.
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT",
"REFLECT_101", "WRAP".
:param border_val: value used in case of a constant border. Default: 0
:param interp_mode: interpolation methods.
Default: "LINEAR". Currently only support "LINEAR" mode.
:return: output tensor.
Note:
The transformation matrix is the inverse of that used by `cv2.warpPerspective`.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
inp_shape = (1, 1, 4, 4)
x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
M_shape = (1, 3, 3)
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
M = tensor(np.array([[1., 0., 1.],
[0., 1., 1.],
[0., 0., 1.]], dtype=np.float32).reshape(M_shape))
out = F.vision.warp_perspective(x, M, (2, 2))
print(out.numpy())
Outputs:
.. testoutput::
[[[[ 5. 6.]
[ 9. 10.]]]]
"""
op = builtin.WarpPerspective(
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val
)
inp, M = utils.convert_inputs(inp, M)
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, M, dsize)
return result
def interpolate(
inp: Tensor,
size: Optional[Union[int, Tuple[int, int]]] = None,
scale_factor: Optional[Union[float, Tuple[float, float]]] = None,
mode: str = "BILINEAR",
align_corners: Optional[bool] = None,
) -> Tensor:
r"""
Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``.
:param inp: input tensor.
:param size: size of the output tensor. Default: None
:param scale_factor: scaling factor of the output tensor. Default: None
:param mode: interpolation methods, acceptable values are:
"BILINEAR", "LINEAR". Default: "BILINEAR"
:param align_corners: This only has an effect when `mode`
is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input
and output as squares rather than points. If set to ``True``, the input
and output tensors are aligned by the center points of their corner
pixels, preserving the values at the corner pixels. If set to ``False``,
the input and output tensors are aligned by the corner points of their
corner pixels, and the interpolation uses edge value padding for
out-of-boundary values, making this operation *independent* of input size
:return: output tensor.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))
out = F.vision.interpolate(x, [4, 4], align_corners=False)
print(out.numpy())
out2 = F.vision.interpolate(x, scale_factor=2.)
np.testing.assert_allclose(out.numpy(), out2.numpy())
Outputs:
.. testoutput::
[[[[1. 1.25 1.75 2. ]
[1.5 1.75 2.25 2.5 ]
[2.5 2.75 3.25 3.5 ]
[3. 3.25 3.75 4. ]]]]
"""
mode = mode.upper()
if mode not in ["BILINEAR", "LINEAR"]:
raise ValueError("interpolate only support linear or bilinear mode")
if mode not in ["BILINEAR", "LINEAR"]:
if align_corners is not None:
raise ValueError(
"align_corners option can only be set in the bilinear/linear interpolating mode"
)
else:
if align_corners is None:
align_corners = False
if (
size is not None
and scale_factor is None
and not align_corners
and mode == "BILINEAR"
and inp.ndim in [4, 5]
):
# fastpath for interpolate
op = builtin.Resize(imode="LINEAR", format="NCHW")
shape = astensor1d(size, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, shape)
return result
if mode == "LINEAR":
inp = expand_dims(inp, 3)
if inp.ndim != 4:
raise ValueError("shape of input tensor must correspond to the operartion mode")
if size is None:
if scale_factor is None:
raise ValueError("scale_factor must not be None when size is None")
if isinstance(scale_factor, (float, int)):
scale_factor = float(scale_factor)
if mode == "LINEAR":
scale_factor = (scale_factor, float(1))
else:
scale_factor = (scale_factor, scale_factor)
else:
if mode == "LINEAR":
raise ValueError(
"under LINEAR mode, scale_factor can only be single value"
)
assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )"
assert isinstance(scale_factor[0], float) and isinstance(
scale_factor[1], float
), "scale_factor must be float type"
dsize = tuple(
floor(
Tensor(
inp.shape[i + 2] * scale_factor[i],
dtype="float32",
device=inp.device,
)
)
for i in range(2)
)
dsize = concat([dsize[0], dsize[1]], axis=0)
else:
if scale_factor is not None:
raise ValueError("scale_factor must be None when size is provided")
if isinstance(size, int):
size = (size, 1)
else:
if mode == "LINEAR":
raise ValueError("under LINEAR mode, size can only be single value")
dsize = size
oh, ow = dsize[0], dsize[1]
ih, iw = inp.shape[2], inp.shape[3]
if align_corners:
hscale = (ih - 1.0) / (oh - 1.0)
wscale = 1.0 * iw / ow
if mode != "LINEAR":
wscale = (iw - 1.0) / (ow - 1.0)
row0 = concat(
[wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0
).reshape(1, 3)
row1 = concat(
[
Tensor(0, dtype="float32", device=inp.device),
hscale,
Tensor(0, dtype="float32", device=inp.device),
],
axis=0,
).reshape(1, 3)
weight = concat(
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)],
axis=0,
).reshape(1, 3, 3)
weight = broadcast_to(weight, (inp.shape[0], 3, 3))
else:
hscale = 1.0 * ih / oh
wscale = 1.0 * iw / ow
row0 = concat(
[wscale, Tensor(0, dtype="float32", device=inp.device), 0.5 * wscale - 0.5],
axis=0,
).reshape(1, 3)
row1 = concat(
[Tensor(0, dtype="float32", device=inp.device), hscale, 0.5 * hscale - 0.5],
axis=0,
).reshape(1, 3)
weight = concat(
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)],
axis=0,
).reshape(1, 3, 3)
weight = broadcast_to(weight, (inp.shape[0], 3, 3))
weight = weight.astype("float32")
ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR")
if mode == "LINEAR":
ret = reshape(ret, ret.shape[0:3])
return ret
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
# Unless required by applicable law or agreed to in writing, # Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an # software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from ..functional import copy from ..functional.tensor import copy
from .module import Module from .module import Module
......
...@@ -372,7 +372,7 @@ def test_interpolate_fastpath(): ...@@ -372,7 +372,7 @@ def test_interpolate_fastpath():
x = mge.Tensor(x_np) x = mge.Tensor(x_np)
grad = Grad().wrt(x, callback=save_to(x)) grad = Grad().wrt(x, callback=save_to(x))
y = F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") y = F.vision.interpolate(x, size=(16, 16), mode="BILINEAR")
grad(y, F.ones_like(y)) grad(y, F.ones_like(y))
np.testing.assert_equal(np.ones(x_np.shape, dtype=np.float32) / 4, x.grad.numpy()) np.testing.assert_equal(np.ones(x_np.shape, dtype=np.float32) / 4, x.grad.numpy())
......
...@@ -136,8 +136,8 @@ def test_interpolate(): ...@@ -136,8 +136,8 @@ def test_interpolate():
def linear_interpolate(): def linear_interpolate():
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))
out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") out = F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR")
out2 = F.nn.interpolate(inp, 4, mode="LINEAR") out2 = F.vision.interpolate(inp, 4, mode="LINEAR")
np.testing.assert_allclose( np.testing.assert_allclose(
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
...@@ -149,16 +149,16 @@ def test_interpolate(): ...@@ -149,16 +149,16 @@ def test_interpolate():
def many_batch_interpolate(): def many_batch_interpolate():
inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))
out = F.nn.interpolate(inp, [4, 4]) out = F.vision.interpolate(inp, [4, 4])
out2 = F.nn.interpolate(inp, scale_factor=2.0) out2 = F.vision.interpolate(inp, scale_factor=2.0)
np.testing.assert_allclose(out.numpy(), out2.numpy()) np.testing.assert_allclose(out.numpy(), out2.numpy())
def assign_corner_interpolate(): def assign_corner_interpolate():
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))
out = F.nn.interpolate(inp, [4, 4], align_corners=True) out = F.vision.interpolate(inp, [4, 4], align_corners=True)
out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True) out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True)
np.testing.assert_allclose(out.numpy(), out2.numpy()) np.testing.assert_allclose(out.numpy(), out2.numpy())
...@@ -166,13 +166,13 @@ def test_interpolate(): ...@@ -166,13 +166,13 @@ def test_interpolate():
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))
with pytest.raises(ValueError): with pytest.raises(ValueError):
F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR")
def inappropriate_scale_linear_interpolate(): def inappropriate_scale_linear_interpolate():
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))
with pytest.raises(ValueError): with pytest.raises(ValueError):
F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")
linear_interpolate() linear_interpolate()
many_batch_interpolate() many_batch_interpolate()
...@@ -205,7 +205,7 @@ def test_roi_align(): ...@@ -205,7 +205,7 @@ def test_roi_align():
grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
output_shape = (7, 7) output_shape = (7, 7)
out_feat = F.nn.roi_align( out_feat = F.vision.roi_align(
inp_feat, inp_feat,
rois, rois,
output_shape=output_shape, output_shape=output_shape,
...@@ -228,7 +228,7 @@ def test_roi_pooling(): ...@@ -228,7 +228,7 @@ def test_roi_pooling():
inp_feat, rois = _gen_roi_inp() inp_feat, rois = _gen_roi_inp()
grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
output_shape = (7, 7) output_shape = (7, 7)
out_feat = F.nn.roi_pooling( out_feat = F.vision.roi_pooling(
inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
) )
assert make_shape_tuple(out_feat.shape) == ( assert make_shape_tuple(out_feat.shape) == (
...@@ -335,18 +335,18 @@ def test_interpolate_fastpath(): ...@@ -335,18 +335,18 @@ def test_interpolate_fastpath():
] ]
for inp_shape, target_shape in test_cases: for inp_shape, target_shape in test_cases:
x = tensor(np.random.randn(*inp_shape), dtype=np.float32) x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
out = F.nn.interpolate(x, target_shape, mode="BILINEAR") out = F.vision.interpolate(x, target_shape, mode="BILINEAR")
assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]
# check value # check value
x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
out = F.nn.interpolate(x, (15, 5), mode="BILINEAR") out = F.vision.interpolate(x, (15, 5), mode="BILINEAR")
np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))
np_x = np.arange(32) np_x = np.arange(32)
x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
out = F.nn.interpolate(x, (1, 1), mode="BILINEAR") out = F.vision.interpolate(x, (1, 1), mode="BILINEAR")
np.testing.assert_equal(out.item(), np_x.mean()) np.testing.assert_equal(out.item(), np_x.mean())
...@@ -360,7 +360,7 @@ def test_warp_perspective(): ...@@ -360,7 +360,7 @@ def test_warp_perspective():
[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
).reshape(M_shape) ).reshape(M_shape)
) )
outp = F.warp_perspective(x, M, (2, 2)) outp = F.vision.warp_perspective(x, M, (2, 2))
np.testing.assert_equal( np.testing.assert_equal(
outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32) outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32)
) )
...@@ -370,7 +370,7 @@ def test_warp_affine(): ...@@ -370,7 +370,7 @@ def test_warp_affine():
inp_shape = (1, 3, 3, 3) inp_shape = (1, 3, 3, 3)
x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
outp = F.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP")
res = np.array( res = np.array(
[ [
[ [
...@@ -393,7 +393,7 @@ def test_remap(): ...@@ -393,7 +393,7 @@ def test_remap():
[[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
).reshape(map_xy_shape) ).reshape(map_xy_shape)
) )
outp = F.remap(inp, map_xy) outp = F.vision.remap(inp, map_xy)
np.testing.assert_equal( np.testing.assert_equal(
outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32) outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
) )
...@@ -476,7 +476,7 @@ def test_nms(): ...@@ -476,7 +476,7 @@ def test_nms():
) )
inp = tensor(x) inp = tensor(x)
scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32) scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
result = F.nn.nms(inp, scores=scores, iou_thresh=0.5) result = F.vision.nms(inp, scores=scores, iou_thresh=0.5)
np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32)) np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))
...@@ -737,7 +737,7 @@ def test_cvt_color(): ...@@ -737,7 +737,7 @@ def test_cvt_color():
inp = np.random.randn(3, 3, 3, 3).astype(np.float32) inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32) out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
x = tensor(inp) x = tensor(inp)
y = F.img_proc.cvt_color(x, mode="RGB2GRAY") y = F.vision.cvt_color(x, mode="RGB2GRAY")
np.testing.assert_allclose(y.numpy(), out, atol=1e-5) np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
......
...@@ -360,7 +360,7 @@ def test_trace_warp_perspective(): ...@@ -360,7 +360,7 @@ def test_trace_warp_perspective():
@trace(symbolic=True) @trace(symbolic=True)
def f(x, M): def f(x, M):
out = F.warp_perspective(x, M, (2, 2)) out = F.vision.warp_perspective(x, M, (2, 2))
np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2]))
return out return out
...@@ -429,10 +429,10 @@ def test_trace_nms(): ...@@ -429,10 +429,10 @@ def test_trace_nms():
@trace(symbolic=False) @trace(symbolic=False)
def f(boxes, scores): def f(boxes, scores):
# with tracing, max_output must be specified # with tracing, max_output must be specified
results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20)
# without tracing, max output can be inferred inside nms # without tracing, max output can be inferred inside nms
with exclude_from_trace(): with exclude_from_trace():
_ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) _ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5)
return results return results
f(*make_inputs(10)) f(*make_inputs(10))
......
...@@ -226,7 +226,7 @@ def test_roipooling(): ...@@ -226,7 +226,7 @@ def test_roipooling():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(inp, rois): def fwd(inp, rois):
return F.nn.roi_pooling(inp, rois, (2, 2), scale=2.0) return F.vision.roi_pooling(inp, rois, (2, 2), scale=2.0)
output = fwd(inp, rois) output = fwd(inp, rois)
check_pygraph_dump(fwd, [inp, rois], [output]) check_pygraph_dump(fwd, [inp, rois], [output])
...@@ -315,7 +315,7 @@ def test_roialign(): ...@@ -315,7 +315,7 @@ def test_roialign():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(inp, rois): def fwd(inp, rois):
return F.nn.roi_align(inp, rois, (2, 2)) return F.vision.roi_align(inp, rois, (2, 2))
output = fwd(inp, rois) output = fwd(inp, rois)
check_pygraph_dump(fwd, [inp, rois], [output]) check_pygraph_dump(fwd, [inp, rois], [output])
...@@ -334,7 +334,7 @@ def test_warpperspective(): ...@@ -334,7 +334,7 @@ def test_warpperspective():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(x, M): def fwd(x, M):
return F.warp_perspective(x, M, (2, 2)) return F.vision.warp_perspective(x, M, (2, 2))
result = fwd(x, M) result = fwd(x, M)
check_pygraph_dump(fwd, [x, M], [result]) check_pygraph_dump(fwd, [x, M], [result])
...@@ -347,7 +347,7 @@ def test_warpaffine(): ...@@ -347,7 +347,7 @@ def test_warpaffine():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(x, weightv): def fwd(x, weightv):
return F.warp_affine(x, weightv, (2, 2), border_mode="WRAP") return F.vision.warp_affine(x, weightv, (2, 2), border_mode="WRAP")
outp = fwd(x, weightv) outp = fwd(x, weightv)
check_pygraph_dump(fwd, [x, weightv], [outp]) check_pygraph_dump(fwd, [x, weightv], [outp])
...@@ -365,7 +365,7 @@ def test_remap(): ...@@ -365,7 +365,7 @@ def test_remap():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(inp, map_xy): def fwd(inp, map_xy):
return F.remap(inp, map_xy) return F.vision.remap(inp, map_xy)
out = fwd(inp, map_xy) out = fwd(inp, map_xy)
check_pygraph_dump(fwd, [inp, map_xy], [out]) check_pygraph_dump(fwd, [inp, map_xy], [out])
...@@ -376,7 +376,7 @@ def test_resize(): ...@@ -376,7 +376,7 @@ def test_resize():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(x): def fwd(x):
return F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") return F.vision.interpolate(x, size=(16, 16), mode="BILINEAR")
out = fwd(x) out = fwd(x)
check_pygraph_dump(fwd, [x], [out]) check_pygraph_dump(fwd, [x], [out])
...@@ -706,7 +706,7 @@ def test_cvtcolor(): ...@@ -706,7 +706,7 @@ def test_cvtcolor():
@trace(symbolic=True, capture_as_const=True) @trace(symbolic=True, capture_as_const=True)
def fwd(inp): def fwd(inp):
return F.img_proc.cvt_color(inp, mode="RGB2GRAY") return F.vision.cvt_color(inp, mode="RGB2GRAY")
result = fwd(x) result = fwd(x)
check_pygraph_dump(fwd, [x], [result]) check_pygraph_dump(fwd, [x], [result])
/** /**
* \file imperative/src/impl/ops/img_proc.cpp * \file imperative/src/impl/ops/vision.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
* *
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
...@@ -31,4 +31,4 @@ OP_TRAIT_REG(CvtColor, CvtColor) ...@@ -31,4 +31,4 @@ OP_TRAIT_REG(CvtColor, CvtColor)
.fallback(); .fallback();
} }
} }
} }
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册