提交 d915c5a3 编写于 作者: M Megvii Engine Team 提交者: huangxinda

refactor(mgb): make convolution3D handle noncontiguous tensors

GitOrigin-RevId: 3d3c31b02161532637948ba9aec42d161ec05e92
上级 d04cd67f
......@@ -122,8 +122,6 @@ Convolution3DBase::CanonizedFilterMeta Convolution3DBase::deduce_layout_fwd(
TensorLayout& dst) const {
auto errmsg = [&]() { return get_errmsg(src, filter, dst, param()); };
MEGDNN_MARK_USED_VAR(errmsg);
megdnn_assert_contiguous(src);
megdnn_assert_contiguous(filter);
megdnn_assert(src.ndim >= 5_z, "%s", errmsg().c_str());
megdnn_assert(src.dtype == filter.dtype, "%s", errmsg().c_str());
if (param().data_type == Param::DataType::FLOAT) {
......@@ -170,6 +168,8 @@ Convolution3DBase::CanonizedFilterMeta Convolution3DBase::deduce_layout_fwd(
Convolution3DBase::CanonizedFilterMeta Convolution3DBase::check_layout_fwd(
const TensorLayout& src, const TensorLayout& filter,
const TensorLayout& dst) const {
megdnn_assert_contiguous(src);
megdnn_assert_contiguous(filter);
TensorLayout dst_expected;
auto ret = deduce_layout_fwd(src, filter, dst_expected);
megdnn_assert_eq_layout(dst_expected, dst);
......@@ -185,7 +185,12 @@ void Convolution3DForward::deduce_layout(const TensorLayout& src,
Convolution3DBase::CanonizedFilterMeta Convolution3DForward::check_exec(
const TensorLayout& src, const TensorLayout& filter,
const TensorLayout& dst, size_t workspace_in_bytes) {
auto ret = check_layout_fwd(src, filter, dst);
auto src_fwd = src;
auto dst_fwd = dst;
src_fwd.init_contiguous_stride();
dst_fwd.init_contiguous_stride();
auto ret = check_layout_fwd(src_fwd, filter, dst_fwd);
auto required_workspace_in_bytes = get_workspace_in_bytes(src, filter, dst);
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
return ret;
......@@ -196,7 +201,12 @@ Convolution3DBase::CanonizedFilterMeta Convolution3DBackwardData::check_exec(
const TensorLayout& grad, size_t workspace_in_bytes) {
megdnn_assert(param().data_type == Param::DataType::FLOAT,
"only float type is supported for conv backward");
auto ret = check_layout_fwd(grad, filter, diff);
auto diff_fwd = diff;
auto grad_fwd = grad;
diff_fwd.init_contiguous_stride();
grad_fwd.init_contiguous_stride();
auto ret = check_layout_fwd(grad_fwd, filter, diff_fwd);
auto required_workspace_in_bytes =
get_workspace_in_bytes(filter, diff, grad);
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
......@@ -244,7 +254,12 @@ Convolution3DBase::CanonizedFilterMeta Convolution3DBackwardFilter::check_exec(
const TensorLayout& grad, size_t workspace_in_bytes) {
megdnn_assert(param().data_type == Param::DataType::FLOAT,
"only float type is supported for conv backward");
auto ret = check_layout_fwd(src, grad, diff);
auto src_fwd = src;
auto diff_fwd = diff;
src_fwd.init_contiguous_stride();
diff_fwd.init_contiguous_stride();
auto ret = check_layout_fwd(src_fwd, grad, diff_fwd);
auto required_workspace_in_bytes = get_workspace_in_bytes(src, diff, grad);
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
return ret;
......
......@@ -44,6 +44,8 @@ bool ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::is_available(
args.diff_layout->dtype == dtype::QuantizedS8())) {
return false;
}
if (args.filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout diff_pg, grad_pg;
modify_size_args(sub_args, diff_pg, grad_pg);
......
......@@ -19,7 +19,7 @@ using namespace convolution;
bool ConvolutionBackwardFilterImpl::AlgoChanwise::is_available(
const SizeArgs &args) const {
if (!args.grad_layout->is_contiguous() ||
if (!args.src_layout->is_contiguous() ||
!args.diff_layout->is_contiguous()) {
return false;
}
......
......@@ -42,6 +42,8 @@ bool ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::is_available(
args.diff_layout->dtype == dtype::BFloat16()) {
return false;
}
if (args.grad_filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout src_pg, diff_pg;
modify_size_args(sub_args, src_pg, diff_pg);
......
......@@ -64,7 +64,7 @@ Convolution3DBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs(
Convolution3DBackwardDataImpl *o,
const TensorLayout &filter, const TensorLayout &diff,
const TensorLayout &grad):
SizeArgs(o, o->check_layout_fwd(grad, filter, diff), diff, grad)
SizeArgs(o, o->make_canonized_filter_meta(grad.ndim, filter), diff, grad)
{
}
......
......@@ -19,6 +19,10 @@ using namespace convolution3d;
bool Convolution3DBackwardDataImpl::AlgoChanwise::is_available(
const SizeArgs &args) const {
if (!args.grad_layout->is_contiguous() ||
!args.diff_layout->is_contiguous()) {
return false;
}
auto &&fm = args.filter_meta;
return args.filter_meta.format == Param::Format::NCDHW &&
args.diff_layout->dtype.category() == DTypeCategory::FLOAT &&
......
......@@ -38,6 +38,8 @@ Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(
bool Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::is_available(
const SizeArgs &args) const {
if (args.filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout diff_pg, grad_pg;
modify_size_args(sub_args, diff_pg, grad_pg);
......
......@@ -67,7 +67,7 @@ Convolution3DBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs(
Convolution3DBackwardFilterImpl *o,
const TensorLayout &src, const TensorLayout &diff,
const TensorLayout &grad):
SizeArgs(o, src, diff, o->check_layout_fwd(src, grad, diff))
SizeArgs(o, src, diff, o->make_canonized_filter_meta(src.ndim, grad))
{
}
......
......@@ -19,6 +19,10 @@ using namespace convolution3d;
bool Convolution3DBackwardFilterImpl::AlgoChanwise::is_available(
const SizeArgs &args) const {
if (!args.src_layout->is_contiguous() ||
!args.diff_layout->is_contiguous()) {
return false;
}
auto &&fm = args.grad_filter_meta;
return fm.format == Param::Format::NCDHW &&
args.diff_layout->dtype.category() == DTypeCategory::FLOAT &&
......
......@@ -38,6 +38,8 @@ Convolution3DBackwardFilterImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(
bool Convolution3DBackwardFilterImpl::AlgoGroupConvGeneral::is_available(
const SizeArgs &args) const {
if (args.grad_filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout src_pg, diff_pg;
modify_size_args(sub_args, src_pg, diff_pg);
......
......@@ -17,6 +17,10 @@ using namespace cuda;
bool Convolution3DBackwardFilterImpl::AlgoInplaceMatmul::is_available(
const SizeArgs &args) const {
if (!args.src_layout->is_contiguous() ||
!args.diff_layout->is_contiguous()) {
return false;
}
auto &&fm = args.grad_filter_meta;
return args.grad_filter_meta.format == Param::Format::NCDHW &&
args.src_layout->dtype == dtype::Float32() &&
......
......@@ -69,7 +69,7 @@ Convolution3DForwardImpl::AlgoBase::SizeArgs::SizeArgs(
Convolution3DForwardImpl *o,
const TensorLayout &src, const TensorLayout &filter,
const TensorLayout &dst):
SizeArgs(o, src, o->check_layout_fwd(src, filter, dst), dst)
SizeArgs(o, src, o->make_canonized_filter_meta(src.ndim, filter), dst)
{
}
......
......@@ -19,6 +19,10 @@ using namespace convolution3d;
bool Convolution3DForwardImpl::AlgoChanwise::is_available(
const SizeArgs &args) const {
if (!args.src_layout->is_contiguous() ||
!args.dst_layout->is_contiguous()) {
return false;
}
auto &&fm = args.filter_meta;
return args.filter_meta.format == Param::Format::NCDHW &&
args.src_layout->dtype.category() == DTypeCategory::FLOAT &&
......
......@@ -45,6 +45,8 @@ Convolution3DForwardImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(
bool Convolution3DForwardImpl::AlgoGroupConvGeneral::is_available(
const SizeArgs &args) const {
if (args.filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout src_pg, dst_pg;
modify_size_args(sub_args, src_pg, dst_pg);
......
......@@ -215,7 +215,6 @@ void backward_data(_megdnn_tensor_in filter,
_megdnn_tensor_in diff,
_megdnn_tensor_out grad,
const Convolution3D::CanonizedFilterMeta &filter_meta) {
megdnn_assert(grad.layout.is_contiguous());
memset(grad.raw_ptr, 0, grad.layout.span().dist_byte());
megdnn_assert(filter_meta.spatial_ndim == 3);
compute3d<gtype, ftype, dtype, StrategyBwdData>(
......@@ -227,7 +226,6 @@ void backward_filter(_megdnn_tensor_in src,
_megdnn_tensor_in diff,
_megdnn_tensor_out grad,
const Convolution3D::CanonizedFilterMeta &filter_meta) {
megdnn_assert(grad.layout.is_contiguous());
memset(grad.raw_ptr, 0, grad.layout.span().dist_byte());
megdnn_assert(filter_meta.spatial_ndim == 3);
compute3d<stype, gtype, dtype, StrategyBwdFlt>(
......
......@@ -384,16 +384,6 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
}
checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
TensorLayoutArray{filter, dst, src});
//! noncontiguous case
{
param::Convolution param;
param.pad_h = param.pad_w = 1;
checker.set_param(param).execl(TensorLayoutArray{
{{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::QuantizedS8{1.3f}},
{{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::QuantizedS8{1.2f}},
{{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::QuantizedS8{1.2f}}
});
}
}
}
......
......@@ -150,6 +150,77 @@ TEST_F(CUDA, CONVOLUTION3D_MATMUL_FORWARD) {
}
}
TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_CUDNN) {
using namespace convolution3d;
Checker<Convolution3DForward> checker(handle_cuda());
checker.set_before_exec_callback(AlgoChecker<Convolution3DForward>(
"CUDNN"));
param::Convolution3D param;
param.pad_d = param.pad_h = param.pad_w = 1;
checker.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_epsilon(1e-3);
//! noncontiguous case
{
checker.set_param(param).execl(TensorLayoutArray{
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()}});
}
}
TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_INPLACE_MATMUL) {
using namespace convolution3d;
Checker<Convolution3DForward> checker(handle_cuda());
checker.set_before_exec_callback(AlgoChecker<Convolution3DForward>(
"INPLACE_MATMUL"));
param::Convolution3D param;
param.pad_d = param.pad_h = param.pad_w = 1;
checker.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_epsilon(1e-3);
//! noncontiguous case
{
checker.set_param(param).execl(TensorLayoutArray{
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()}});
}
}
TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_1x1x1) {
using namespace convolution3d;
Checker<Convolution3DForward> checker(handle_cuda());
checker.set_before_exec_callback(AlgoChecker<Convolution3DForward>(
"1x1x1"));
param::Convolution3D param;
checker.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_epsilon(1e-3);
//! noncontiguous case
{
checker.set_param(param).execl(TensorLayoutArray{
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{5, 5, 1, 1, 1}, {5, 1, 1, 1, 1}, dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()}});
}
}
#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, BENCHMARK_CONVOLUTION3D_MATMUL_BACKWARD_FILTER) {
using namespace convolution3d;
......@@ -343,6 +414,60 @@ TEST_F(CUDA, CONVOLUTION3D_MATMUL_BACKWARD_FILTER) {
}
}
TEST_F(CUDA, CONVOLUTION3D_BACKWARD_DATA_NONCONTIG_CUDNN) {
using namespace convolution3d;
Checker<Convolution3DBackwardData> checker(handle_cuda());
checker.set_before_exec_callback(AlgoChecker<Convolution3DBackwardData>(
"CUDNN"));
Convolution3DBackwardData::Param param;
param.pad_d = param.pad_h = param.pad_w = 1;
NormalRNG default_rng;
checker.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_rng(0, &default_rng)
.set_rng(1, &default_rng)
.set_epsilon(1e-3)
.set_param(param);
//! noncontiguous case
{
checker.execl(TensorLayoutArray{
{{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()}});
}
}
TEST_F(CUDA, CONVOLUTION3D_BACKWARD_FILTER_NONCONTIG_CUDNN) {
using namespace convolution3d;
Checker<Convolution3DBackwardFilter> checker(handle_cuda());
checker.set_before_exec_callback(AlgoChecker<Convolution3DBackwardFilter>(
"CUDNN"));
Convolution3DBackwardFilter::Param param;
param.pad_d = param.pad_h = param.pad_w = 1;
NormalRNG default_rng;
checker.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_rng(0, &default_rng)
.set_rng(1, &default_rng)
.set_epsilon(1e-3)
.set_param(param);
//! noncontiguous case
{
checker.execl(TensorLayoutArray{
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{4, 5, 16, 16, 16},
{40960, 4096, 256, 16, 1},
dtype::Float32()},
{{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()}});
}
}
/*
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
auto eps_getter = [](bool f16, int stage, const char *name) -> float {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册