Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
d8d3f405
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
d8d3f405
编写于
4月 26, 2020
作者:
M
Megvii Engine Team
提交者:
Xinran Xu
5月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mge/data): fix an nan bug in coco dataset
GitOrigin-RevId: 689fbaafa5563a048d7753a3021494acf093047f
上级
41464e18
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
42 addition
and
34 deletion
+42
-34
python_module/megengine/data/dataset/vision/coco.py
python_module/megengine/data/dataset/vision/coco.py
+26
-28
python_module/megengine/data/dataset/vision/objects365.py
python_module/megengine/data/dataset/vision/objects365.py
+3
-1
python_module/megengine/data/dataset/vision/voc.py
python_module/megengine/data/dataset/vision/voc.py
+13
-5
未找到文件。
python_module/megengine/data/dataset/vision/coco.py
浏览文件 @
d8d3f405
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
import
json
import
json
import
os
import
os
from
collections
import
OrderedDict
,
defaultdict
from
collections
import
defaultdict
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
...
@@ -28,26 +28,21 @@ def _count_visible_keypoints(anno):
...
@@ -28,26 +28,21 @@ def _count_visible_keypoints(anno):
return
sum
(
sum
(
1
for
v
in
ann
[
"keypoints"
][
2
::
3
]
if
v
>
0
)
for
ann
in
anno
)
return
sum
(
sum
(
1
for
v
in
ann
[
"keypoints"
][
2
::
3
]
if
v
>
0
)
for
ann
in
anno
)
def
_has_only_empty_bbox
(
anno
):
def
has_valid_annotation
(
anno
,
order
):
return
all
(
any
(
o
<=
0
for
o
in
obj
[
"bbox"
][
2
:])
for
obj
in
anno
)
def
has_valid_annotation
(
anno
):
# if it"s empty, there is no annotation
# if it"s empty, there is no annotation
if
len
(
anno
)
==
0
:
if
len
(
anno
)
==
0
:
return
False
return
False
# if all boxes have close to zero area, there is no annotation
if
"boxes"
in
order
or
"boxes_category"
in
order
:
if
_has_only_empty_bbox
(
anno
):
if
"bbox"
not
in
anno
[
0
]:
return
False
return
False
# keypoints task have a slight different critera for considering
if
"keypoints"
in
order
:
# if an annotation is valid
if
"keypoints"
not
in
anno
[
0
]:
if
"keypoints"
not
in
anno
[
0
]:
return
False
return
True
# for keypoint detection tasks, only consider valid images those
# for keypoint detection tasks, only consider valid images those
# containing at least min_keypoints_per_image
# containing at least min_keypoints_per_image
if
_count_visible_keypoints
(
anno
)
<
min_keypoints_per_image
:
if
_count_visible_keypoints
(
anno
)
>=
min_keypoints_per_image
:
return
False
return
True
return
True
return
False
class
COCO
(
VisionDataset
):
class
COCO
(
VisionDataset
):
...
@@ -58,8 +53,8 @@ class COCO(VisionDataset):
...
@@ -58,8 +53,8 @@ class COCO(VisionDataset):
"image"
,
"image"
,
"boxes"
,
"boxes"
,
"boxes_category"
,
"boxes_category"
,
"keypoints"
,
# TODO: need to check
# TODO: need to check
# "keypoints",
# "polygons",
# "polygons",
"info"
,
"info"
,
)
)
...
@@ -72,7 +67,7 @@ class COCO(VisionDataset):
...
@@ -72,7 +67,7 @@ class COCO(VisionDataset):
with
open
(
ann_file
,
"r"
)
as
f
:
with
open
(
ann_file
,
"r"
)
as
f
:
dataset
=
json
.
load
(
f
)
dataset
=
json
.
load
(
f
)
self
.
imgs
=
OrderedD
ict
()
self
.
imgs
=
d
ict
()
for
img
in
dataset
[
"images"
]:
for
img
in
dataset
[
"images"
]:
# for saving memory
# for saving memory
if
"license"
in
img
:
if
"license"
in
img
:
...
@@ -98,7 +93,7 @@ class COCO(VisionDataset):
...
@@ -98,7 +93,7 @@ class COCO(VisionDataset):
del
ann
[
"segmentation"
]
del
ann
[
"segmentation"
]
self
.
img_to_anns
[
ann
[
"image_id"
]].
append
(
ann
)
self
.
img_to_anns
[
ann
[
"image_id"
]].
append
(
ann
)
self
.
cats
=
OrderedD
ict
()
self
.
cats
=
d
ict
()
for
cat
in
dataset
[
"categories"
]:
for
cat
in
dataset
[
"categories"
]:
self
.
cats
[
cat
[
"id"
]]
=
cat
self
.
cats
[
cat
[
"id"
]]
=
cat
...
@@ -109,8 +104,17 @@ class COCO(VisionDataset):
...
@@ -109,8 +104,17 @@ class COCO(VisionDataset):
ids
=
[]
ids
=
[]
for
img_id
in
self
.
ids
:
for
img_id
in
self
.
ids
:
anno
=
self
.
img_to_anns
[
img_id
]
anno
=
self
.
img_to_anns
[
img_id
]
if
has_valid_annotation
(
anno
):
# filter crowd annotations
anno
=
[
obj
for
obj
in
anno
if
obj
[
"iscrowd"
]
==
0
]
anno
=
[
obj
for
obj
in
anno
if
obj
[
"bbox"
][
2
]
>
0
and
obj
[
"bbox"
][
3
]
>
0
]
if
has_valid_annotation
(
anno
,
order
):
ids
.
append
(
img_id
)
ids
.
append
(
img_id
)
self
.
img_to_anns
[
img_id
]
=
anno
else
:
del
self
.
imgs
[
img_id
]
del
self
.
img_to_anns
[
img_id
]
self
.
ids
=
ids
self
.
ids
=
ids
self
.
json_category_id_to_contiguous_id
=
{
self
.
json_category_id_to_contiguous_id
=
{
...
@@ -125,11 +129,6 @@ class COCO(VisionDataset):
...
@@ -125,11 +129,6 @@ class COCO(VisionDataset):
img_id
=
self
.
ids
[
index
]
img_id
=
self
.
ids
[
index
]
anno
=
self
.
img_to_anns
[
img_id
]
anno
=
self
.
img_to_anns
[
img_id
]
# filter crowd annotations
anno
=
[
obj
for
obj
in
anno
if
obj
[
"iscrowd"
]
==
0
]
# filter empty annotations
anno
=
[
obj
for
obj
in
anno
if
obj
[
"area"
]
>
0
]
target
=
[]
target
=
[]
for
k
in
self
.
order
:
for
k
in
self
.
order
:
if
k
==
"image"
:
if
k
==
"image"
:
...
@@ -181,7 +180,6 @@ class COCO(VisionDataset):
...
@@ -181,7 +180,6 @@ class COCO(VisionDataset):
return
img_info
return
img_info
class_names
=
(
class_names
=
(
"background"
,
"person"
,
"person"
,
"bicycle"
,
"bicycle"
,
"car"
,
"car"
,
...
...
python_module/megengine/data/dataset/vision/objects365.py
浏览文件 @
d8d3f405
...
@@ -69,7 +69,9 @@ class Objects365(VisionDataset):
...
@@ -69,7 +69,9 @@ class Objects365(VisionDataset):
anno
=
self
.
img_to_anns
[
img_id
]
anno
=
self
.
img_to_anns
[
img_id
]
# filter crowd annotations
# filter crowd annotations
anno
=
[
obj
for
obj
in
anno
if
obj
[
"iscrowd"
]
==
0
]
anno
=
[
obj
for
obj
in
anno
if
obj
[
"iscrowd"
]
==
0
]
anno
=
[
obj
for
obj
in
anno
if
obj
[
"bbox"
][
2
]
>
0
and
obj
[
"bbox"
][
3
]
>
0
]
anno
=
[
obj
for
obj
in
anno
if
obj
[
"bbox"
][
2
]
>
0
and
obj
[
"bbox"
][
3
]
>
0
]
if
len
(
anno
)
>
0
:
if
len
(
anno
)
>
0
:
ids
.
append
(
img_id
)
ids
.
append
(
img_id
)
self
.
img_to_anns
[
img_id
]
=
anno
self
.
img_to_anns
[
img_id
]
=
anno
...
...
python_module/megengine/data/dataset/vision/voc.py
浏览文件 @
d8d3f405
...
@@ -37,7 +37,9 @@ class PascalVOC(VisionDataset):
...
@@ -37,7 +37,9 @@ class PascalVOC(VisionDataset):
def
__init__
(
self
,
root
,
image_set
,
*
,
order
=
None
):
def
__init__
(
self
,
root
,
image_set
,
*
,
order
=
None
):
if
(
"boxes"
in
order
or
"boxes_category"
in
order
)
and
"mask"
in
order
:
if
(
"boxes"
in
order
or
"boxes_category"
in
order
)
and
"mask"
in
order
:
raise
ValueError
(
"PascalVOC only supports boxes & boxes_category or mask, not both."
)
raise
ValueError
(
"PascalVOC only supports boxes & boxes_category or mask, not both."
)
super
().
__init__
(
root
,
order
=
order
,
supported_order
=
self
.
supported_order
)
super
().
__init__
(
root
,
order
=
order
,
supported_order
=
self
.
supported_order
)
...
@@ -48,13 +50,15 @@ class PascalVOC(VisionDataset):
...
@@ -48,13 +50,15 @@ class PascalVOC(VisionDataset):
image_dir
=
os
.
path
.
join
(
self
.
root
,
"JPEGImages"
)
image_dir
=
os
.
path
.
join
(
self
.
root
,
"JPEGImages"
)
if
"boxes"
in
order
or
"boxes_category"
in
order
:
if
"boxes"
in
order
or
"boxes_category"
in
order
:
annotation_dir
=
os
.
path
.
join
(
self
.
root
,
'Annotations'
)
annotation_dir
=
os
.
path
.
join
(
self
.
root
,
"Annotations"
)
splitdet_dir
=
os
.
path
.
join
(
self
.
root
,
"ImageSets/Main"
)
splitdet_dir
=
os
.
path
.
join
(
self
.
root
,
"ImageSets/Main"
)
split_f
=
os
.
path
.
join
(
splitdet_dir
,
image_set
.
rstrip
(
"
\n
"
)
+
".txt"
)
split_f
=
os
.
path
.
join
(
splitdet_dir
,
image_set
.
rstrip
(
"
\n
"
)
+
".txt"
)
with
open
(
os
.
path
.
join
(
split_f
),
"r"
)
as
f
:
with
open
(
os
.
path
.
join
(
split_f
),
"r"
)
as
f
:
self
.
file_names
=
[
x
.
strip
()
for
x
in
f
.
readlines
()]
self
.
file_names
=
[
x
.
strip
()
for
x
in
f
.
readlines
()]
self
.
images
=
[
os
.
path
.
join
(
image_dir
,
x
+
".jpg"
)
for
x
in
self
.
file_names
]
self
.
images
=
[
os
.
path
.
join
(
image_dir
,
x
+
".jpg"
)
for
x
in
self
.
file_names
]
self
.
annotations
=
[
os
.
path
.
join
(
annotation_dir
,
x
+
".xml"
)
for
x
in
self
.
file_names
]
self
.
annotations
=
[
os
.
path
.
join
(
annotation_dir
,
x
+
".xml"
)
for
x
in
self
.
file_names
]
assert
len
(
self
.
images
)
==
len
(
self
.
annotations
)
assert
len
(
self
.
images
)
==
len
(
self
.
annotations
)
elif
"mask"
in
order
:
elif
"mask"
in
order
:
if
"aug"
in
image_set
:
if
"aug"
in
image_set
:
...
@@ -81,13 +85,17 @@ class PascalVOC(VisionDataset):
...
@@ -81,13 +85,17 @@ class PascalVOC(VisionDataset):
anno
=
self
.
parse_voc_xml
(
ET
.
parse
(
self
.
annotations
[
index
]).
getroot
())
anno
=
self
.
parse_voc_xml
(
ET
.
parse
(
self
.
annotations
[
index
]).
getroot
())
boxes
=
[
obj
[
"bndbox"
]
for
obj
in
anno
[
"annotation"
][
"object"
]]
boxes
=
[
obj
[
"bndbox"
]
for
obj
in
anno
[
"annotation"
][
"object"
]]
# boxes type xyxy
# boxes type xyxy
boxes
=
[(
bb
[
'xmin'
],
bb
[
'ymin'
],
bb
[
'xmax'
],
bb
[
'ymax'
])
for
bb
in
boxes
]
boxes
=
[
(
bb
[
"xmin"
],
bb
[
"ymin"
],
bb
[
"xmax"
],
bb
[
"ymax"
])
for
bb
in
boxes
]
boxes
=
np
.
array
(
boxes
,
dtype
=
np
.
float32
).
reshape
(
-
1
,
4
)
boxes
=
np
.
array
(
boxes
,
dtype
=
np
.
float32
).
reshape
(
-
1
,
4
)
target
.
append
(
boxes
)
target
.
append
(
boxes
)
elif
k
==
"boxes_category"
:
elif
k
==
"boxes_category"
:
anno
=
self
.
parse_voc_xml
(
ET
.
parse
(
self
.
annotations
[
index
]).
getroot
())
anno
=
self
.
parse_voc_xml
(
ET
.
parse
(
self
.
annotations
[
index
]).
getroot
())
boxes_category
=
[
obj
[
"name"
]
for
obj
in
anno
[
"annotation"
][
"object"
]]
boxes_category
=
[
obj
[
"name"
]
for
obj
in
anno
[
"annotation"
][
"object"
]]
boxes_category
=
[
self
.
class_names
.
index
(
bc
)
-
1
for
bc
in
boxes_category
]
boxes_category
=
[
self
.
class_names
.
index
(
bc
)
-
1
for
bc
in
boxes_category
]
boxes_category
=
np
.
array
(
boxes_category
,
dtype
=
np
.
int32
)
boxes_category
=
np
.
array
(
boxes_category
,
dtype
=
np
.
int32
)
target
.
append
(
boxes_category
)
target
.
append
(
boxes_category
)
elif
k
==
"mask"
:
elif
k
==
"mask"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录