提交 bd7f885a 编写于 作者: M Megvii Engine Team

fix(mge/pytest): remove __init__ in py-test

GitOrigin-RevId: e16eae9cbcb4038bd1abbf4c6089d9cbb7cd4afc
上级 06041f8a
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), "helpers"))
import numpy as np
from megengine import tensor
def _default_compare_fn(x, y):
np.testing.assert_allclose(x.numpy(), y, rtol=1e-6)
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
"""
:param cases: the list which have dict element, the list length should be 2 for dynamic shape test.
and the dict should have input,
and should have output if ref_fn is None.
should use list for multiple inputs and outputs for each case.
:param func: the function to run opr.
:param compare_fn: the function to compare the result and expected, use assertTensorClose if None.
:param ref_fn: the function to generate expected data, should assign output if None.
Examples:
.. code-block::
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
opr_test(cases,
F.eye,
ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
dtype=dtype)
"""
def check_results(results, expected):
if not isinstance(results, (tuple, list)):
results = (results,)
for r, e in zip(results, expected):
compare_fn(r, e)
def get_param(cases, idx):
case = cases[idx]
inp = case.get("input", None)
outp = case.get("output", None)
if inp is None:
raise ValueError("the test case should have input")
if not isinstance(inp, (tuple, list)):
inp = (inp,)
if ref_fn is not None and callable(ref_fn):
outp = ref_fn(*inp)
if outp is None:
raise ValueError("the test case should have output or reference function")
if not isinstance(outp, (tuple, list)):
outp = (outp,)
return inp, outp
if len(cases) == 0:
raise ValueError("should give one case at least")
if not callable(func):
raise ValueError("the input func should be callable")
inp, outp = get_param(cases, 0)
inp_tensor = [tensor(inpi) for inpi in inp]
results = func(*inp_tensor, **kwargs)
check_results(results, outp)
......@@ -13,9 +13,9 @@ else
fi
pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'not isolated_distributed'
PYTHONPATH="." python3 -m pytest $test_dirs -m 'not isolated_distributed'
if [[ "$TEST_PLAT" == cuda ]]; then
echo "test GPU pytest now"
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'isolated_distributed'
PYTHONPATH="." python3 -m pytest $test_dirs -m 'isolated_distributed'
fi
popd >/dev/null
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -10,6 +10,7 @@ import itertools
import numpy as np
import pytest
from utils import opr_test
import megengine.core.ops.builtin as builtin
import megengine.core.tensor.dtype as dtype
......@@ -21,68 +22,6 @@ from megengine.core.tensor.utils import make_shape_tuple
from megengine.test import assertTensorClose
def _default_compare_fn(x, y):
assertTensorClose(x.numpy(), y)
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
"""
func: the function to run opr.
compare_fn: the function to compare the result and expected, use assertTensorClose if None.
ref_fn: the function to generate expected data, should assign output if None.
cases: the list which have dict element, the list length should be 2 for dynamic shape test.
and the dict should have input,
and should have output if ref_fn is None.
should use list for multiple inputs and outputs for each case.
kwargs: The additional kwargs for opr func.
simple examples:
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
opr_test(cases,
F.eye,
ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
dtype=dtype)
"""
def check_results(results, expected):
if not isinstance(results, (tuple, list)):
results = (results,)
for r, e in zip(results, expected):
compare_fn(r, e)
def get_param(cases, idx):
case = cases[idx]
inp = case.get("input", None)
outp = case.get("output", None)
if inp is None:
raise ValueError("the test case should have input")
if not isinstance(inp, (tuple, list)):
inp = (inp,)
if ref_fn is not None and callable(ref_fn):
outp = ref_fn(*inp)
if outp is None:
raise ValueError("the test case should have output or reference function")
if not isinstance(outp, (tuple, list)):
outp = (outp,)
return inp, outp
if len(cases) == 0:
raise ValueError("should give one case at least")
if not callable(func):
raise ValueError("the input func should be callable")
inp, outp = get_param(cases, 0)
inp_tensor = [tensor(inpi) for inpi in inp]
results = func(*inp_tensor, **kwargs)
check_results(results, outp)
def test_where():
maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
......
......@@ -9,78 +9,13 @@
from functools import partial
import numpy as np
from utils import opr_test
import megengine.functional as F
from megengine import tensor
from megengine.test import assertTensorClose
def _default_compare_fn(x, y):
assertTensorClose(x.numpy(), y)
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
"""
func: the function to run opr.
compare_fn: the function to compare the result and expected, use assertTensorClose if None.
ref_fn: the function to generate expected data, should assign output if None.
cases: the list which have dict element, the list length should be 2 for dynamic shape test.
and the dict should have input,
and should have output if ref_fn is None.
should use list for multiple inputs and outputs for each case.
kwargs: The additional kwargs for opr func.
simple examples:
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
opr_test(cases,
F.eye,
ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
dtype=dtype)
"""
def check_results(results, expected):
if not isinstance(results, tuple):
results = (results,)
for r, e in zip(results, expected):
compare_fn(r, e)
def get_param(cases, idx):
case = cases[idx]
inp = case.get("input", None)
outp = case.get("output", None)
if inp is None:
raise ValueError("the test case should have input")
if not isinstance(inp, list):
inp = (inp,)
else:
inp = tuple(inp)
if ref_fn is not None and callable(ref_fn):
outp = ref_fn(*inp)
if outp is None:
raise ValueError("the test case should have output or reference function")
if not isinstance(outp, list):
outp = (outp,)
else:
outp = tuple(outp)
return inp, outp
if len(cases) == 0:
raise ValueError("should give one case at least")
if not callable(func):
raise ValueError("the input func should be callable")
inp, outp = get_param(cases, 0)
inp_tensor = [tensor(inpi) for inpi in inp]
results = func(*inp_tensor, **kwargs)
check_results(results, outp)
def common_test_reduce(opr, ref_opr):
data1_shape = (5, 6, 7)
data2_shape = (2, 9, 12)
......
......@@ -6,10 +6,12 @@
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import numpy as np
import pytest
from utils import opr_test
import megengine.functional as F
from megengine import tensor
......@@ -19,72 +21,6 @@ from megengine.distributed.helper import get_device_count_by_fork
from megengine.test import assertTensorClose
def _default_compare_fn(x, y):
assertTensorClose(x.numpy(), y)
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
"""
func: the function to run opr.
compare_fn: the function to compare the result and expected, use assertTensorClose if None.
ref_fn: the function to generate expected data, should assign output if None.
cases: the list which have dict element, the list length should be 2 for dynamic shape test.
and the dict should have input,
and should have output if ref_fn is None.
should use list for multiple inputs and outputs for each case.
kwargs: The additional kwargs for opr func.
simple examples:
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
opr_test(cases,
F.eye,
ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
dtype=dtype)
"""
def check_results(results, expected):
if not isinstance(results, tuple):
results = (results,)
for r, e in zip(results, expected):
compare_fn(r, e)
def get_param(cases, idx):
case = cases[idx]
inp = case.get("input", None)
outp = case.get("output", None)
if inp is None:
raise ValueError("the test case should have input")
if not isinstance(inp, list):
inp = (inp,)
else:
inp = tuple(inp)
if ref_fn is not None and callable(ref_fn):
outp = ref_fn(*inp)
if outp is None:
raise ValueError("the test case should have output or reference function")
if not isinstance(outp, list):
outp = (outp,)
else:
outp = tuple(outp)
return inp, outp
if len(cases) == 0:
raise ValueError("should give one case at least")
if not callable(func):
raise ValueError("the input func should be callable")
inp, outp = get_param(cases, 0)
inp_tensor = [tensor(inpi) for inpi in inp]
results = func(*inp_tensor, **kwargs)
check_results(results, outp)
def test_eye():
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
......@@ -265,37 +201,37 @@ def test_flatten():
data1 = np.random.random(data1_shape).astype(np.float32)
def compare_fn(x, y):
assert x.numpy().shape == y[0]
assert x.shape[0] == y
output0 = (2 * 3 * 4 * 5,)
output1 = (4 * 5 * 6 * 7,)
cases = [
{"input": data0, "output": (output0,)},
{"input": data1, "output": (output1,)},
{"input": data0, "output": output0},
{"input": data1, "output": output1},
]
opr_test(cases, F.flatten, compare_fn=compare_fn)
output0 = (2, 3 * 4 * 5)
output1 = (4, 5 * 6 * 7)
cases = [
{"input": data0, "output": (output0,)},
{"input": data1, "output": (output1,)},
{"input": data0, "output": output0},
{"input": data1, "output": output1},
]
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1)
output0 = (2, 3, 4 * 5)
output1 = (4, 5, 6 * 7)
cases = [
{"input": data0, "output": (output0,)},
{"input": data1, "output": (output1,)},
{"input": data0, "output": output0},
{"input": data1, "output": output1},
]
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2)
output0 = (2, 3 * 4, 5)
output1 = (4, 5 * 6, 7)
cases = [
{"input": data0, "output": (output0,)},
{"input": data1, "output": (output1,)},
{"input": data0, "output": output0},
{"input": data1, "output": output1},
]
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2)
......@@ -310,7 +246,7 @@ def test_broadcast():
data2 = np.random.random(input2_shape).astype(np.float32)
def compare_fn(x, y):
assert x.numpy().shape == y
assert x.shape[0] == y
cases = [
{"input": [data1, output1_shape], "output": output1_shape},
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册