Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
b8ccc6a2
MegEngine
项目概览
MegEngine 天元
/
MegEngine
大约 1 年 前同步成功
通知
399
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
b8ccc6a2
编写于
11月 29, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mgb): fix loss execution policy after opr shallow copy
GitOrigin-RevId: 4738136e4a8a3270a2b5343483539f46afe05c6d
上级
c27f6782
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
312 addition
and
108 deletion
+312
-108
imperative/src/impl/ops/specializations.cpp
imperative/src/impl/ops/specializations.cpp
+1
-1
src/core/include/megbrain/ir/ops.td
src/core/include/megbrain/ir/ops.td
+1
-1
src/gopt/impl/global_layout_transform/opr_format_modifier.cpp
...gopt/impl/global_layout_transform/opr_format_modifier.cpp
+53
-29
src/gopt/impl/inference.cpp
src/gopt/impl/inference.cpp
+2
-1
src/gopt/impl/tensor_reformat.cpp
src/gopt/impl/tensor_reformat.cpp
+12
-10
src/gopt/test/cache_data.h
src/gopt/test/cache_data.h
+0
-0
src/gopt/test/layout_transform_pass.cpp
src/gopt/test/layout_transform_pass.cpp
+2
-2
src/opr/impl/blas.sereg.h
src/opr/impl/blas.sereg.h
+14
-2
src/opr/impl/dnn/dnn.sereg.h
src/opr/impl/dnn/dnn.sereg.h
+71
-23
src/opr/impl/dnn/pooling.cpp
src/opr/impl/dnn/pooling.cpp
+4
-3
src/opr/include/megbrain/opr/dnn/pooling.h
src/opr/include/megbrain/opr/dnn/pooling.h
+3
-3
src/opr/test/algo_chooser.cpp
src/opr/test/algo_chooser.cpp
+140
-31
src/opr/test/dnn/pooling.cpp
src/opr/test/dnn/pooling.cpp
+2
-2
src/serialization/include/megbrain/serialization/sereg.h
src/serialization/include/megbrain/serialization/sereg.h
+7
-0
未找到文件。
imperative/src/impl/ops/specializations.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -183,7 +183,7 @@ namespace pooling {
auto
apply_on_var_node
(
const
OpDef
&
def
,
const
VarNodeArray
&
inputs
)
{
auto
&&
pool
=
static_cast
<
const
Pooling
&>
(
def
);
OperatorNodeConfig
config
{
pool
.
make_name
()};
return
opr
::
Pooling
::
make
(
inputs
[
0
],
pool
.
param
(),
config
);
return
opr
::
Pooling
::
make
(
inputs
[
0
],
pool
.
param
(),
pool
.
policy
(),
config
);
}
OP_TRAIT_REG
(
Pooling
,
Pooling
).
apply_on_var_node
(
apply_on_var_node
).
fallback
();
}
// namespace pooling
...
...
src/core/include/megbrain/ir/ops.td
浏览文件 @
b8ccc6a2
...
...
@@ -63,7 +63,7 @@ def DeformableConv : MgbHashableOp<"DeformableConv", [ConvolutionParam, Executio
def GroupLocal: MgbHashableOp<"GroupLocal", [ConvolutionParam]>;
def Pooling: MgbHashableOp<"Pooling", [PoolingParam]>;
def Pooling: MgbHashableOp<"Pooling", [PoolingParam
, ExecutionPolicyParamBase<"policy">
]>;
def AdaptivePooling : MgbHashableOp<"AdaptivePooling", [AdaptivePoolingParam]>;
...
...
src/gopt/impl/global_layout_transform/opr_format_modifier.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -31,7 +31,21 @@ using namespace opr;
namespace
{
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeConvCaller2
{
struct
MakeOprWithPolicyCaller1
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNConv
::
Param
&
param
,
const
megdnn
::
param
::
ExecutionPolicy
&
execution_policy
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
1
)
{
return
Opr
::
make
(
inputs
[
0
],
param
,
execution_policy
,
config
).
node
();
}
return
nullptr
;
}
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeOprWithPolicyCaller2
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNConv
::
Param
&
param
,
...
...
@@ -46,7 +60,7 @@ struct MakeConvCaller2 {
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
Make
Conv
Caller3
{
struct
Make
OprWithPolicy
Caller3
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNConv
::
Param
&
param
,
...
...
@@ -63,7 +77,7 @@ struct MakeConvCaller3 {
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
Make
Conv
Caller4
{
struct
Make
OprWithPolicy
Caller4
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNConv
::
Param
&
param
,
...
...
@@ -80,7 +94,7 @@ struct MakeConvCaller4 {
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
Make
Conv
Caller5
{
struct
Make
OprWithPolicy
Caller5
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNConv
::
Param
&
param
,
...
...
@@ -97,7 +111,7 @@ struct MakeConvCaller5 {
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
Make
Conv
CallerEmpty
{
struct
Make
OprWithPolicy
CallerEmpty
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
,
const
typename
MegDNNConv
::
Param
&
,
...
...
@@ -108,10 +122,10 @@ struct MakeConvCallerEmpty {
template
<
class
Opr
,
class
Maker0
,
class
MegDNNConv
,
class
Maker1
=
Make
Conv
CallerEmpty
<
MegDNNConv
>,
class
Maker2
=
Make
Conv
CallerEmpty
<
MegDNNConv
>
,
typename
ConvParam
=
megdnn
::
param
::
Convolution
>
struct
Conv
MakerImpl
{
class
Maker1
=
Make
OprWithPolicy
CallerEmpty
<
MegDNNConv
>,
class
Maker2
=
Make
OprWithPolicy
CallerEmpty
<
MegDNNConv
>
,
typename
ConvParam
=
typename
MegDNNConv
::
Param
>
struct
OprWithPolicy
MakerImpl
{
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
ConvParam
&
param
,
const
megdnn
::
param
::
ExecutionPolicy
&
execution_policy
,
...
...
@@ -130,33 +144,43 @@ struct ConvMakerImpl {
};
template
<
typename
Opr
>
struct
ConvMaker
;
struct
OprWithPolicyMaker
;
template
<
>
struct
OprWithPolicyMaker
<
opr
::
Pooling
>
:
public
OprWithPolicyMakerImpl
<
opr
::
Pooling
,
MakeOprWithPolicyCaller1
<
megdnn
::
Pooling
>
,
megdnn
::
Pooling
>
{};
template
<
>
struct
Conv
Maker
<
opr
::
Convolution
>
:
public
Conv
MakerImpl
<
opr
::
Convolution
,
Make
Conv
Caller2
<
megdnn
::
Convolution
>
,
struct
OprWithPolicy
Maker
<
opr
::
Convolution
>
:
public
OprWithPolicy
MakerImpl
<
opr
::
Convolution
,
Make
OprWithPolicy
Caller2
<
megdnn
::
Convolution
>
,
megdnn
::
Convolution
>
{};
template
<
>
struct
ConvMaker
<
opr
::
ConvolutionBackwardData
>
:
public
ConvMakerImpl
<
opr
::
ConvolutionBackwardData
,
MakeConvCaller2
<
megdnn
::
Convolution
>
,
megdnn
::
Convolution
,
MakeConvCaller3
<
megdnn
::
Convolution
>>
{};
struct
OprWithPolicyMaker
<
opr
::
ConvolutionBackwardData
>
:
public
OprWithPolicyMakerImpl
<
opr
::
ConvolutionBackwardData
,
MakeOprWithPolicyCaller2
<
megdnn
::
Convolution
>
,
megdnn
::
Convolution
,
MakeOprWithPolicyCaller3
<
megdnn
::
Convolution
>>
{};
template
<
>
struct
ConvMaker
<
opr
::
ConvBiasForward
>
:
public
ConvMakerImpl
<
opr
::
ConvBiasForward
,
MakeConvCaller2
<
megdnn
::
ConvBiasForward
>
,
megdnn
::
ConvBiasForward
,
MakeConvCaller3
<
megdnn
::
ConvBiasForward
>
,
MakeConvCaller4
<
megdnn
::
ConvBiasForward
>
,
megdnn
::
param
::
ConvBias
>
{};
struct
OprWithPolicyMaker
<
opr
::
ConvBiasForward
>
:
public
OprWithPolicyMakerImpl
<
opr
::
ConvBiasForward
,
MakeOprWithPolicyCaller2
<
megdnn
::
ConvBiasForward
>
,
megdnn
::
ConvBiasForward
,
MakeOprWithPolicyCaller3
<
megdnn
::
ConvBiasForward
>
,
MakeOprWithPolicyCaller4
<
megdnn
::
ConvBiasForward
>
,
megdnn
::
param
::
ConvBias
>
{};
template
<
>
struct
Conv
Maker
<
opr
::
BatchConvBiasForward
>
:
public
Conv
MakerImpl
<
struct
OprWithPolicy
Maker
<
opr
::
BatchConvBiasForward
>
:
public
OprWithPolicy
MakerImpl
<
opr
::
BatchConvBiasForward
,
Make
Conv
Caller2
<
megdnn
::
BatchConvBiasForward
>
,
Make
OprWithPolicy
Caller2
<
megdnn
::
BatchConvBiasForward
>
,
megdnn
::
BatchConvBiasForward
,
Make
Conv
Caller3
<
megdnn
::
BatchConvBiasForward
>
,
Make
Conv
Caller4
<
megdnn
::
BatchConvBiasForward
>
,
Make
OprWithPolicy
Caller3
<
megdnn
::
BatchConvBiasForward
>
,
Make
OprWithPolicy
Caller4
<
megdnn
::
BatchConvBiasForward
>
,
megdnn
::
param
::
BatchConvBias
>
{};
#include "../../opr/impl/internal/invoke.h"
...
...
@@ -254,7 +278,7 @@ struct OprFormatModifier;
auto&& opr = opr_->cast_final_safe<_Opr>(); \
auto param = opr.param(); \
param.format = opr_format; \
return
ConvMaker<_Opr>::make(
\
return
OprWithPolicyMaker<_Opr>::make(
\
i, param, opr.execution_policy(), opr.config()); \
MIDOUT_E \
} \
...
...
@@ -263,6 +287,7 @@ INST(Convolution);
INST
(
ConvBiasForward
);
INST
(
ConvolutionBackwardData
);
INST
(
BatchConvBiasForward
);
INST
(
Pooling
);
#undef INST
template
<
>
...
...
@@ -303,7 +328,6 @@ struct OprFormatModifier<WarpPerspective> {
MIDOUT_E \
} \
};
INST
(
PoolingForward
,
1
);
INST
(
Resize
,
2
);
#undef INST
...
...
src/gopt/impl/inference.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -1492,7 +1492,8 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() {
}
auto
new_param
=
pooling_opr
.
param
();
new_param
.
format
=
megdnn
::
param
::
Pooling
::
Format
::
NHWCD4
;
auto
new_pooling_opr
=
opr
::
PoolingForward
::
make
(
inp
,
new_param
,
opr
->
config
());
auto
new_pooling_opr
=
opr
::
PoolingForward
::
make
(
inp
,
new_param
,
pooling_opr
.
execution_policy
(),
opr
->
config
());
return
new_pooling_opr
.
node
()
->
owner_opr
();
};
...
...
src/gopt/impl/tensor_reformat.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -525,8 +525,8 @@ std::unique_ptr<EnableTensorCorePass> EnableTensorCorePass::
}
auto
new_param
=
pooling
.
param
();
new_param
.
format
=
Format
::
NCHW32
;
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp_var
,
new_param
,
opr
->
config
());
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp_var
,
new_param
,
pooling
.
execution_policy
()
,
opr
->
config
());
return
new_pooling
.
node
()
->
owner_opr
();
}
return
serialization
::
copy_opr_shallow
(
*
opr
,
new_inp
,
opr
->
config
());
...
...
@@ -795,8 +795,8 @@ std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() {
if
(
varshape_changed
.
count
(
new_inp
[
0
]))
{
auto
new_param
=
pooling
.
param
();
new_param
.
format
=
Format
::
CHWN4
;
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp
[
0
],
new_param
,
opr
->
config
());
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp
[
0
],
new_param
,
pooling
.
execution_policy
()
,
opr
->
config
());
varshape_changed
.
insert
(
new_pooling
.
node
());
return
new_pooling
.
node
()
->
owner_opr
();
}
...
...
@@ -1174,8 +1174,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
mgb_assert
(
new_inp
[
0
]
->
dtype
().
enumv
()
==
DTypeEnum
::
QuantizedS8
);
auto
new_param
=
pooling
.
param
();
new_param
.
format
=
Format
::
NCHW4
;
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp
[
0
],
new_param
,
opr
->
config
());
auto
new_pooling
=
opr
::
PoolingForward
::
make
(
new_inp
[
0
],
new_param
,
pooling
.
execution_policy
()
,
opr
->
config
());
mgb_assert
(
new_pooling
.
shape
().
ndim
==
5
,
"out var of Pooling opr after transform must be 5 (got: "
...
...
@@ -1646,8 +1646,8 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) {
if
(
inp
->
shape
().
ndim
==
5
)
{
auto
new_param
=
pooling_opr
.
param
();
new_param
.
format
=
pooling_format
;
auto
new_pooling_opr
=
opr
::
PoolingForward
::
make
(
inp
,
new_param
,
opr
->
config
());
auto
new_pooling_opr
=
opr
::
PoolingForward
::
make
(
inp
,
new_param
,
pooling_opr
.
execution_policy
()
,
opr
->
config
());
mgb_assert
(
new_pooling_opr
.
shape
().
ndim
==
5
,
"The pooling dst dim is not trans to nchwxx"
);
...
...
@@ -3003,7 +3003,8 @@ std::unique_ptr<EnableNCHW64Pass> EnableNCHW64Pass::make_nchw64_converter() {
auto
target_format
=
cur
==
Format
::
NCHW64
?
cur
:
Format
::
NHWC
;
auto
param
=
pooling
.
param
();
param
.
format
=
target_format
;
auto
new_pool
=
opr
::
PoolingForward
::
make
(
inps
[
0
],
param
,
pooling
.
config
());
auto
new_pool
=
opr
::
PoolingForward
::
make
(
inps
[
0
],
param
,
pooling
.
execution_policy
(),
pooling
.
config
());
auto
ret
=
new_pool
.
node
()
->
owner_opr
();
format_map
.
insert
(
std
::
make_pair
(
ret
,
target_format
));
return
ret
;
...
...
@@ -3055,7 +3056,8 @@ std::unique_ptr<EnableNCHW64Pass> EnableNCHW64Pass::make_nchw64_converter() {
auto
param
=
pooling
.
param
();
param
.
format
=
out_format
;
auto
new_pool
=
opr
::
PoolingForward
::
make
(
inps
[
0
],
param
,
pooling
.
config
());
auto
new_pool
=
opr
::
PoolingForward
::
make
(
inps
[
0
],
param
,
pooling
.
execution_policy
(),
pooling
.
config
());
auto
ret
=
new_pool
.
node
()
->
owner_opr
();
format_map
.
insert
(
std
::
make_pair
(
ret
,
out_format
));
return
ret
;
...
...
src/gopt/test/cache_data.h
浏览文件 @
b8ccc6a2
此差异由.gitattributes 抑制。
src/gopt/test/layout_transform_pass.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -281,7 +281,7 @@ TEST(TestLayoutTransform, Resnet18_QS4) {
auto
new_out_var
=
new_output
[
0
];
/// check global layout transform pass
auto
nr_dimshuffle
=
find_opr_num
<
opr
::
Dimshuffle
>
(
new_out_var
);
ASSERT_EQ
(
nr_dimshuffle
,
3
u
);
ASSERT_EQ
(
nr_dimshuffle
,
5
u
);
/// check pass fuse conv bias with z
auto
nr_elemwise_mult_type
=
find_opr_num
<
opr
::
ElemwiseMultiType
>
(
new_out_var
);
ASSERT_EQ
(
nr_elemwise_mult_type
,
4u
);
...
...
@@ -822,7 +822,7 @@ TEST(TestLayoutTransform, Resnet18_F16) {
auto
new_out_var
=
new_output
[
0
];
/// check global layout transform pass
auto
nr_dimshuffle
=
find_opr_num
<
opr
::
Dimshuffle
>
(
new_out_var
);
ASSERT_EQ
(
nr_dimshuffle
,
4
u
);
ASSERT_EQ
(
nr_dimshuffle
,
2
u
);
/// check pass fuse conv bias with z
auto
nr_elemwise
=
find_opr_num
<
opr
::
Elemwise
>
(
new_out_var
);
ASSERT_EQ
(
nr_elemwise
,
4u
);
...
...
src/opr/impl/blas.sereg.h
浏览文件 @
b8ccc6a2
...
...
@@ -80,14 +80,26 @@ struct OprLoadDumpImpl<opr::BatchedMatrixMul, 2>
opr
::
BatchedMatrixMul
,
MakeMatrixMulCaller
<
megdnn
::
BatchedMatrixMul
>
,
megdnn
::
BatchedMatrixMul
>
{};
template
<
typename
Opr
>
cg
::
OperatorNodeBase
*
opr_shallow_copy_matmul
(
const
serialization
::
OprShallowCopyContext
&
ctx
,
const
cg
::
OperatorNodeBase
&
opr_
,
const
VarNodeArray
&
inputs
,
const
OperatorNodeConfig
&
config
)
{
MGB_MARK_USED_VAR
(
ctx
);
auto
&&
opr
=
opr_
.
cast_final_safe
<
Opr
>
();
return
OprLoadDumpImpl
<
Opr
,
2
>::
make
(
inputs
,
opr
.
param
(),
opr
.
execution_policy_transient
(),
config
)
->
owner_opr
();
}
}
// namespace serialization
namespace
opr
{
using
MatrixMulV2
=
MatrixMul
;
using
BatchedMatrixMulV2
=
BatchedMatrixMul
;
MGB_SEREG_OPR
(
MatrixMulV2
,
2
);
MGB_SEREG_OPR
(
BatchedMatrixMulV2
,
2
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
MatrixMulV2
,
2
,
opr_shallow_copy_matmul
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
BatchedMatrixMulV2
,
2
,
opr_shallow_copy_matmul
);
MGB_SEREG_OPR
(
Dot
,
2
);
MGB_SEREG_OPR
(
MatrixInverse
,
1
);
MGB_SEREG_OPR
(
SVD
,
1
);
...
...
src/opr/impl/dnn/dnn.sereg.h
浏览文件 @
b8ccc6a2
...
...
@@ -36,9 +36,10 @@ struct MakePoolingCaller1 {
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNPooling
::
Param
&
param
,
const
megdnn
::
param
::
ExecutionPolicy
&
execution_policy
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
1
)
{
return
Opr
::
make
(
inputs
[
0
],
param
,
config
).
node
();
return
Opr
::
make
(
inputs
[
0
],
param
,
execution_policy
,
config
).
node
();
}
return
nullptr
;
}
...
...
@@ -78,9 +79,13 @@ struct MakePoolingBackwardCaller3 {
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNPooling
::
Param
&
param
,
const
megdnn
::
param
::
ExecutionPolicy
&
execution_policy
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
3
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
param
,
config
).
node
();
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
param
,
execution_policy
,
config
)
.
node
();
}
return
nullptr
;
}
...
...
@@ -223,8 +228,10 @@ struct PoolingLoadDumpImpl {
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
PoolingParam
&
param
,
const
megdnn
::
param
::
ExecutionPolicy
&
execution_policy
,
const
OperatorNodeConfig
&
config
)
{
VarNode
*
ret
=
Maker0
::
template
make
<
Opr
>(
inputs
,
param
,
config
);
VarNode
*
ret
=
Maker0
::
template
make
<
Opr
>(
inputs
,
param
,
execution_policy
,
config
);
mgb_assert
(
ret
);
return
ret
;
}
...
...
@@ -233,6 +240,29 @@ struct PoolingLoadDumpImpl {
OprLoadContext
&
ctx
,
const
cg
::
VarNodeArray
&
inputs
,
const
OperatorNodeConfig
&
config
)
{
auto
param
=
ctx
.
read_param
<
PoolingParam
>
();
return
make
(
inputs
,
param
,
{},
config
)
->
owner_opr
();
}
};
template
<
class
Opr
,
class
Maker0
,
typename
GeneralOprParam
=
megdnn
::
param
::
ROIAlign
>
struct
GeneralOprLoadDumpImpl
{
static
void
dump
(
OprDumpContext
&
ctx
,
const
cg
::
OperatorNodeBase
&
opr_
)
{
auto
&&
opr
=
opr_
.
cast_final_safe
<
Opr
>
();
ctx
.
write_param
<
GeneralOprParam
>
(
opr
.
param
());
}
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
GeneralOprParam
&
param
,
const
OperatorNodeConfig
&
config
)
{
VarNode
*
ret
=
Maker0
::
template
make
<
Opr
>(
inputs
,
param
,
config
);
mgb_assert
(
ret
);
return
ret
;
}
static
cg
::
OperatorNodeBase
*
load
(
OprLoadContext
&
ctx
,
const
cg
::
VarNodeArray
&
inputs
,
const
OperatorNodeConfig
&
config
)
{
auto
param
=
ctx
.
read_param
<
GeneralOprParam
>
();
return
make
(
inputs
,
param
,
config
)
->
owner_opr
();
}
};
...
...
@@ -264,26 +294,26 @@ struct OprMaker<opr::LSQBackward, 5> {
};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
AdaptivePoolingBackward
,
0
>
:
public
Pooling
LoadDumpImpl
<
:
public
GeneralOpr
LoadDumpImpl
<
opr
::
AdaptivePoolingBackward
,
MakeAdaptivePoolingBackwardCaller3
<
megdnn
::
AdaptivePoolingBackward
>
,
megdnn
::
param
::
AdaptivePooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
AdaptivePooling
,
0
>
:
public
Pooling
LoadDumpImpl
<
:
public
GeneralOpr
LoadDumpImpl
<
opr
::
AdaptivePooling
,
MakeROIAlignCaller1
<
megdnn
::
AdaptivePooling
>
,
megdnn
::
param
::
AdaptivePooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
ROIAlign
,
0
>
:
public
Pooling
LoadDumpImpl
<
:
public
GeneralOpr
LoadDumpImpl
<
opr
::
ROIAlign
,
MakeROIAlignCaller1
<
megdnn
::
ROIAlign
>
,
megdnn
::
param
::
ROIAlign
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
ROIAlignBackward
,
0
>
:
public
Pooling
LoadDumpImpl
<
:
public
GeneralOpr
LoadDumpImpl
<
opr
::
ROIAlignBackward
,
MakeROIAlignCaller4
<
megdnn
::
ROIAlignBackward
>
,
megdnn
::
param
::
ROIAlign
>
{};
...
...
@@ -500,15 +530,29 @@ struct OprLoadDumpImpl<opr::DeformableConvBackwardFilter, 0>
opr
::
DeformableConvBackwardFilter
,
MakeConvCaller5
<
megdnn
::
DeformableConvBackwardFilter
>
,
megdnn
::
Convolution
>
{};
template
<
typename
Opr
>
cg
::
OperatorNodeBase
*
opr_shallow_copy_conv
(
const
serialization
::
OprShallowCopyContext
&
ctx
,
const
cg
::
OperatorNodeBase
&
opr_
,
const
VarNodeArray
&
inputs
,
const
OperatorNodeConfig
&
config
)
{
MGB_MARK_USED_VAR
(
ctx
);
auto
&&
opr
=
opr_
.
cast_final_safe
<
Opr
>
();
return
OprLoadDumpImpl
<
Opr
,
0
>::
make
(
inputs
,
opr
.
param
(),
opr
.
execution_policy_transient
(),
config
)
->
owner_opr
();
}
}
// namespace serialization
namespace
opr
{
using
ConvolutionV2
=
Convolution
;
using
ConvolutionBackwardDataV2
=
ConvolutionBackwardData
;
using
ConvolutionBackwardFilterV2
=
ConvolutionBackwardFilter
;
MGB_SEREG_OPR
(
ConvolutionV2
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardDataV2
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardFilterV2
,
0
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
ConvolutionV2
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
ConvolutionBackwardDataV2
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
ConvolutionBackwardFilterV2
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR
(
Images2Neibs
,
1
);
MGB_SEREG_OPR
(
Images2NeibsBackward
,
2
);
...
...
@@ -534,8 +578,8 @@ MGB_SEREG_OPR(LRN, 1);
MGB_SEREG_OPR
(
LRNBackward
,
3
);
using
PoolingV1
=
Pooling
;
using
PoolingBackwardV1
=
PoolingBackward
;
MGB_SEREG_OPR
(
PoolingV1
,
1
);
MGB_SEREG_OPR
(
PoolingBackwardV1
,
3
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
PoolingV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
PoolingBackwardV1
,
0
,
opr_shallow_copy_conv
);
using
AdaptivePoolingV1
=
AdaptivePooling
;
using
AdaptivePoolingBackwardV1
=
AdaptivePoolingBackward
;
MGB_SEREG_OPR
(
AdaptivePoolingV1
,
2
);
...
...
@@ -548,12 +592,13 @@ using MaskConvolutionV2 = MaskConvolution;
MGB_SEREG_OPR
(
MaskConvolutionV2
,
3
);
MGB_SEREG_OPR
(
MaskPropagate
,
1
);
MGB_SEREG_OPR
(
Convolution3D
,
0
);
MGB_SEREG_OPR
(
Convolution3DBackwardData
,
0
);
MGB_SEREG_OPR
(
Convolution3DBackwardFilter
,
0
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
Convolution3D
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
Convolution3DBackwardData
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
Convolution3DBackwardFilter
,
0
,
opr_shallow_copy_conv
);
using
ConvBiasForwardV4
=
ConvBiasForward
;
MGB_SEREG_OPR
(
ConvBiasForwardV4
,
0
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
ConvBiasForwardV4
,
0
,
opr_shallow_copy_conv
);
using
BatchNormV1
=
BatchNorm
;
using
BatchNormBackwardV1
=
BatchNormBackward
;
...
...
@@ -563,9 +608,10 @@ MGB_SEREG_OPR(BatchNormBackwardV1, 6);
using
LocalShareForwardV1
=
LocalShareForward
;
using
LocalShareBackwardDataV1
=
LocalShareBackwardData
;
using
LocalShareBackwardFilterV1
=
LocalShareBackwardFilter
;
MGB_SEREG_OPR
(
LocalShareForwardV1
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardDataV1
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardFilterV1
,
0
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
LocalShareForwardV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
LocalShareBackwardDataV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
LocalShareBackwardFilterV1
,
0
,
opr_shallow_copy_conv
);
using
ROIAlignV1
=
ROIAlign
;
using
ROIAlignBackwardV1
=
ROIAlignBackward
;
...
...
@@ -574,9 +620,11 @@ MGB_SEREG_OPR(ROIAlignBackwardV1, 4);
using
DeformableConvForwardV1
=
DeformableConvForward
;
using
DeformableConvBackwardDataV1
=
DeformableConvBackwardData
;
using
DeformableConvBackwardFilterV1
=
DeformableConvBackwardFilter
;
MGB_SEREG_OPR
(
DeformableConvForwardV1
,
0
);
MGB_SEREG_OPR
(
DeformableConvBackwardDataV1
,
0
);
MGB_SEREG_OPR
(
DeformableConvBackwardFilterV1
,
0
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
DeformableConvForwardV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
DeformableConvBackwardDataV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR_AND_REG_SHALLOW_COPY
(
DeformableConvBackwardFilterV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR
(
CorrelationForward
,
2
);
MGB_SEREG_OPR
(
CorrelationBackwardData1
,
3
);
...
...
@@ -586,7 +634,7 @@ MGB_SEREG_OPR(DeformablePSROIPoolingForward, 3);
MGB_SEREG_OPR
(
DeformablePSROIPoolingBackward
,
5
);
using
BatchConvBiasForwardV1
=
BatchConvBiasForward
;
MGB_SEREG_OPR
(
BatchConvBiasForwardV1
,
0
);
MGB_SEREG_OPR
_AND_REG_SHALLOW_COPY
(
BatchConvBiasForwardV1
,
0
,
opr_shallow_copy_conv
);
MGB_SEREG_OPR
(
FakeQuant
,
3
);
MGB_SEREG_OPR
(
FakeQuantBackward
,
4
);
MGB_SEREG_OPR
(
TQT
,
2
);
...
...
src/opr/impl/dnn/pooling.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -32,8 +32,8 @@ PoolingForward::PoolingForward(
}
SymbolVar
PoolingForward
::
make
(
SymbolVar
i0
,
const
Param
&
param
,
const
OperatorNodeConfig
&
config
,
const
ExecutionPolicy
&
policy
)
{
SymbolVar
i0
,
const
Param
&
param
,
const
ExecutionPolicy
&
policy
,
const
OperatorNodeConfig
&
config
)
{
intl
::
MegDNNOprInitInputsModifier
<
PoolingForward
>::
apply
(
param
,
{
&
i0
});
return
i0
.
insert_single_output_opr
<
PoolingForward
>
(
i0
.
node
(),
param
,
policy
,
config
);
...
...
@@ -75,12 +75,13 @@ PoolingBackward::PoolingBackward(
0
,
true
)
{
init_megdnn_opr
(
*
this
,
param
);
add_input
({
i0
,
i1
,
i2
});
m_policy
=
policy
;
intl
::
MegDNNOprInitPostCtor
<
PoolingBackward
>::
apply
(
*
this
);
}
SymbolVar
PoolingBackward
::
make
(
SymbolVar
i0
,
SymbolVar
i1
,
SymbolVar
i2
,
const
Param
&
param
,
const
OperatorNodeConfig
&
config
,
const
ExecutionPolicy
&
policy
)
{
const
ExecutionPolicy
&
policy
,
const
OperatorNodeConfig
&
config
)
{
intl
::
MegDNNOprInitInputsModifier
<
PoolingBackward
>::
apply
(
param
,
{
&
i0
,
&
i1
,
&
i2
});
return
i0
.
insert_single_output_opr
<
PoolingBackward
>
(
i0
.
node
(),
i1
.
node
(),
i2
.
node
(),
param
,
policy
,
config
);
...
...
src/opr/include/megbrain/opr/dnn/pooling.h
浏览文件 @
b8ccc6a2
...
...
@@ -26,8 +26,8 @@ MGE_WIN_DECLSPEC_FUC PoolingForward(
VarNode
*
src
,
const
Param
&
param
,
const
ExecutionPolicy
&
policy
,
const
OperatorNodeConfig
&
config
);
MGE_WIN_DECLSPEC_FUC
static
SymbolVar
make
(
SymbolVar
src
,
const
Param
&
param
,
const
OperatorNodeConfig
&
config
=
{},
const
ExecutionPolicy
&
policy
=
{});
SymbolVar
src
,
const
Param
&
param
,
const
ExecutionPolicy
&
policy
=
{},
const
OperatorNodeConfig
&
config
=
{});
void
init_output_static_infer_desc
()
override
;
...
...
@@ -47,7 +47,7 @@ MGE_WIN_DECLSPEC_FUC PoolingBackward(
MGE_WIN_DECLSPEC_FUC
static
SymbolVar
make
(
SymbolVar
src
,
SymbolVar
dst
,
SymbolVar
diff
,
const
Param
&
param
,
const
OperatorNodeConfig
&
config
=
{},
const
ExecutionPolicy
&
policy
=
{});
const
ExecutionPolicy
&
policy
=
{},
const
OperatorNodeConfig
&
config
=
{});
MGE_WIN_DECLSPEC_FUC
size_t
get_workspace_size_bytes
(
const
TensorShapeArray
&
input_shapes
,
...
...
src/opr/test/algo_chooser.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -15,7 +15,9 @@
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/pooling.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/serialization/opr_shallow_copy.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
...
...
@@ -32,39 +34,24 @@ using namespace mgb;
namespace
{
#if MGB_CUDA
#if MGB_ENABLE_FASTRUN
template
<
typename
MgbOpr
,
int
arith
>
struct
GraphMaker
;
template
<
typename
MgbOpr
>
struct
GraphMaker
<
MgbOpr
,
2
>
{
SymbolVar
operator
()(
const
std
::
array
<
cg
::
SymbolVar
,
2
>&
inputs
,
typename
MgbOpr
::
Param
&
param
,
typename
MgbOpr
::
ExecutionPolicy
&
policy
)
{
return
MgbOpr
::
make
(
inputs
[
0
],
inputs
[
1
],
param
,
policy
);
}
};
template
<
>
struct
GraphMaker
<
opr
::
ConvolutionBackwardData
,
2
>
{
struct
GraphMaker
<
opr
::
Pooling
,
1
>
{
SymbolVar
operator
()(
const
std
::
array
<
cg
::
SymbolVar
,
2
>&
inputs
,
opr
::
ConvolutionBackwardData
::
Param
&
param
,
opr
::
ConvolutionBackwardData
::
ExecutionPolicy
&
policy
)
{
return
opr
::
ConvolutionBackwardData
::
make_deconv
(
inputs
[
0
],
inputs
[
1
],
param
,
policy
);
const
std
::
array
<
cg
::
SymbolVar
,
1
>&
inputs
,
opr
::
Pooling
::
Param
&
param
,
opr
::
Pooling
::
ExecutionPolicy
&
policy
)
{
return
opr
::
Pooling
::
make
(
inputs
[
0
],
param
,
policy
);
}
};
template
<
>
struct
GraphMaker
<
opr
::
Convolution3DBackwardData
,
2
>
{
template
<
typename
MgbOpr
>
struct
GraphMaker
<
MgbOpr
,
2
>
{
SymbolVar
operator
()(
const
std
::
array
<
cg
::
SymbolVar
,
2
>&
inputs
,
opr
::
Convolution3DBackwardData
::
Param
&
param
,
opr
::
Convolution3DBackwardData
::
ExecutionPolicy
&
policy
)
{
return
opr
::
Convolution3DBackwardData
::
make_deconv
(
inputs
[
0
],
inputs
[
1
],
param
,
policy
);
const
std
::
array
<
cg
::
SymbolVar
,
2
>&
inputs
,
typename
MgbOpr
::
Param
&
param
,
typename
MgbOpr
::
ExecutionPolicy
&
policy
)
{
return
MgbOpr
::
make
(
inputs
[
0
],
inputs
[
1
],
param
,
policy
);
}
};
...
...
@@ -98,6 +85,37 @@ struct GraphMaker<MgbOpr, 5> {
}
};
template
<
typename
MgbOpr
,
int
arith
,
typename
dtype
=
dtype
::
Float32
>
void
test_execution_policy_shallow_copy
(
std
::
array
<
TensorShape
,
arith
>
shapes
,
typename
MgbOpr
::
Param
param
=
{})
{
using
Policy
=
typename
MgbOpr
::
ExecutionPolicy
;
Policy
policy
;
policy
.
strategy
=
Policy
::
Strategy
::
PROFILE
;
auto
cn
=
CompNode
::
load
(
"cpu0"
);
auto
graph0
=
ComputingGraph
::
make
(),
graph1
=
ComputingGraph
::
make
();
std
::
array
<
cg
::
SymbolVar
,
arith
>
inputs0
;
VarNodeArray
inputs1
;
for
(
size_t
i
=
0
;
i
<
arith
;
++
i
)
{
HostTensorND
hi
{
cn
,
shapes
[
i
],
dtype
()};
inputs0
[
i
]
=
opr
::
ImmutableTensor
::
make
(
*
graph0
,
hi
);
inputs1
.
push_back
(
opr
::
ImmutableTensor
::
make
(
*
graph1
,
hi
).
node
());
}
GraphMaker
<
MgbOpr
,
arith
>
graph_maker
;
auto
opr0
=
graph_maker
(
inputs0
,
param
,
policy
).
node
()
->
owner_opr
();
auto
opr1
=
serialization
::
copy_opr_shallow
(
*
opr0
,
inputs1
,
OperatorNodeConfig
{});
auto
m0
=
&
(
opr0
->
template
cast_final
<
MgbOpr
>());
auto
m1
=
&
(
opr1
->
template
cast_final
<
MgbOpr
>());
ASSERT_EQ
(
policy
.
strategy
,
m0
->
execution_policy
().
strategy
);
ASSERT_EQ
(
policy
.
strategy
,
m1
->
execution_policy
().
strategy
);
}
#if MGB_CUDA
#if MGB_ENABLE_FASTRUN
template
<
typename
MgbOpr
,
int
arith
,
typename
dtype
=
dtype
::
Float32
>
void
test_fastrun_opr
(
std
::
array
<
TensorShape
,
arith
>
inps0
,
std
::
array
<
TensorShape
,
arith
>
inps1
,
...
...
@@ -162,16 +180,24 @@ void test_fastrun_opr(
size_t
nr_set_total
=
expect_nr_cache_set_inp1
+
nr_set_inp0
;
ASSERT_EQ
(
cache_set_history
.
size
(),
nr_set_total
);
}
#endif // MGB_ENABLE_FASTRUN
#endif // MGB_CUDA
}
// anonymous namespace
#if MGB_CUDA
#if MGB_ENABLE_FASTRUN
TEST
(
TestOprDNN
,
FastrunIgnoreBatchSizeConvolution
)
{
REQUIRE_GPU
(
1
);
test_fastrun_opr
<
opr
::
Convolution
,
2
>
(
{
TensorShape
{
12
,
3
,
36
,
36
},
TensorShape
{
4
,
3
,
3
,
3
}},
{
TensorShape
{
1
,
3
,
36
,
36
},
TensorShape
{
4
,
3
,
3
,
3
}});
test_fastrun_opr
<
opr
::
ConvolutionBackwardData
,
2
>
(
{
TensorShape
{
12
,
4
,
23
,
29
},
TensorShape
{
4
,
5
,
3
,
2
}},
{
TensorShape
{
2
,
4
,
23
,
29
},
TensorShape
{
4
,
5
,
3
,
2
}});
test_fastrun_opr
<
opr
::
ConvolutionBackwardData
,
3
>
(
{
TensorShape
{
4
,
5
,
3
,
2
},
TensorShape
{
12
,
4
,
23
,
29
},
TensorShape
{
12
,
5
,
25
,
30
}},
{
TensorShape
{
4
,
5
,
3
,
2
},
TensorShape
{
2
,
4
,
23
,
29
},
TensorShape
{
2
,
5
,
25
,
30
}});
test_fastrun_opr
<
opr
::
ConvolutionBackwardFilter
,
3
>
(
{
TensorShape
{
12
,
4
,
23
,
29
},
TensorShape
{
12
,
5
,
21
,
28
},
...
...
@@ -195,9 +221,11 @@ TEST(TestOprDNN, FastrunIgnoreBatchSizeConvolution3D) {
{
TensorShape
{
8
,
4
,
12
,
13
,
14
},
TensorShape
{
4
,
4
,
3
,
3
,
3
}},
{
TensorShape
{
3
,
4
,
12
,
13
,
14
},
TensorShape
{
4
,
4
,
3
,
3
,
3
}});
test_fastrun_opr
<
opr
::
Convolution3DBackwardData
,
2
>
(
{
TensorShape
{
14
,
5
,
12
,
12
,
16
},
TensorShape
{
5
,
5
,
3
,
3
,
3
}},
{
TensorShape
{
4
,
5
,
12
,
12
,
16
},
TensorShape
{
5
,
5
,
3
,
3
,
3
}});
test_fastrun_opr
<
opr
::
Convolution3DBackwardData
,
3
>
(
{
TensorShape
{
5
,
5
,
3
,
3
,
3
},
TensorShape
{
14
,
5
,
12
,
12
,
16
},
TensorShape
{
14
,
5
,
14
,
14
,
18
}},
{
TensorShape
{
5
,
5
,
3
,
3
,
3
},
TensorShape
{
4
,
5
,
12
,
12
,
16
},
TensorShape
{
4
,
5
,
14
,
14
,
18
}});
test_fastrun_opr
<
opr
::
Convolution3DBackwardFilter
,
3
>
(
{
TensorShape
{
64
,
16
,
18
,
18
,
18
},
TensorShape
{
64
,
16
,
18
,
18
,
18
},
...
...
@@ -295,6 +323,87 @@ TEST(TestOprDNN, FastrunIgnoreBatchSizeBatchedMatrixMul) {
#endif // MGB_ENABLE_FASTRUN
#endif // MGB_CUDA
}
// anonymous namespace
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyConvolution
)
{
test_execution_policy_shallow_copy
<
opr
::
Convolution
,
2
>
(
{
TensorShape
{
12
,
3
,
36
,
36
},
TensorShape
{
4
,
3
,
3
,
3
}});
test_execution_policy_shallow_copy
<
opr
::
ConvolutionBackwardData
,
3
>
(
{
TensorShape
{
4
,
5
,
3
,
2
},
TensorShape
{
12
,
4
,
23
,
29
},
TensorShape
{
12
,
5
,
25
,
30
}});
test_execution_policy_shallow_copy
<
opr
::
ConvolutionBackwardFilter
,
3
>
(
{
TensorShape
{
12
,
4
,
23
,
29
},
TensorShape
{
12
,
5
,
21
,
28
},
TensorShape
{
5
,
4
,
3
,
2
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyConvBias
)
{
test_execution_policy_shallow_copy
<
opr
::
ConvBias
,
3
>
(
{
TensorShape
{
20
,
16
,
50
,
50
},
TensorShape
{
24
,
16
,
3
,
3
},
TensorShape
{
1
,
24
,
1
,
1
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyConvolution3D
)
{
test_execution_policy_shallow_copy
<
opr
::
Convolution3D
,
2
>
(
{
TensorShape
{
8
,
4
,
12
,
13
,
14
},
TensorShape
{
4
,
4
,
3
,
3
,
3
}});
test_execution_policy_shallow_copy
<
opr
::
Convolution3DBackwardData
,
3
>
(
{
TensorShape
{
5
,
5
,
3
,
3
,
3
},
TensorShape
{
14
,
5
,
12
,
12
,
16
},
TensorShape
{
14
,
5
,
14
,
14
,
18
}});
test_execution_policy_shallow_copy
<
opr
::
Convolution3DBackwardFilter
,
3
>
(
{
TensorShape
{
64
,
16
,
18
,
18
,
18
},
TensorShape
{
64
,
16
,
18
,
18
,
18
},
TensorShape
{
16
,
16
,
1
,
1
,
1
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyLocalShare
)
{
opr
::
LocalShare
::
Param
local_share_param
;
local_share_param
.
mode
=
opr
::
LocalShare
::
Param
::
Mode
::
CROSS_CORRELATION
;
local_share_param
.
pad_h
=
local_share_param
.
pad_w
=
1
;
local_share_param
.
stride_h
=
local_share_param
.
stride_w
=
1
;
local_share_param
.
spatial_groups_h
=
local_share_param
.
spatial_groups_w
=
2
;
test_execution_policy_shallow_copy
<
opr
::
LocalShareForward
,
2
>
(
{
TensorShape
{
32
,
2
,
23
,
23
},
TensorShape
{
2
,
2
,
2
,
2
,
2
,
7
}},
local_share_param
);
test_execution_policy_shallow_copy
<
opr
::
LocalShareBackwardData
,
3
>
(
{
TensorShape
{
3
,
3
,
128
,
1
,
1
,
128
},
TensorShape
{
32
,
128
,
24
,
24
},
TensorShape
{
32
,
128
,
24
,
24
}});
test_execution_policy_shallow_copy
<
opr
::
LocalShareBackwardFilter
,
3
>
(
{
TensorShape
{
12
,
3
,
36
,
36
},
TensorShape
{
12
,
4
,
35
,
35
},
TensorShape
{
3
,
3
,
3
,
3
,
3
,
4
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyDeformableConv
)
{
test_execution_policy_shallow_copy
<
opr
::
DeformableConvForward
,
4
>
(
{
TensorShape
{
12
,
6
,
20
,
20
},
TensorShape
{
6
,
6
,
3
,
3
},
TensorShape
{
12
,
18
,
18
,
18
},
TensorShape
{
12
,
9
,
18
,
18
}});
test_execution_policy_shallow_copy
<
opr
::
DeformableConvBackwardData
,
5
>
(
{
TensorShape
{
12
,
6
,
20
,
20
},
TensorShape
{
6
,
6
,
3
,
3
},
TensorShape
{
12
,
18
,
18
,
18
},
TensorShape
{
12
,
9
,
18
,
18
},
TensorShape
{
12
,
6
,
18
,
18
}});
test_execution_policy_shallow_copy
<
opr
::
DeformableConvBackwardFilter
,
5
>
(
{
TensorShape
{
12
,
6
,
20
,
20
},
TensorShape
{
6
,
6
,
3
,
3
},
TensorShape
{
12
,
18
,
18
,
18
},
TensorShape
{
12
,
9
,
18
,
18
},
TensorShape
{
12
,
6
,
18
,
18
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyMatrixMul
)
{
test_execution_policy_shallow_copy
<
opr
::
MatrixMul
,
2
>
(
{
TensorShape
{
10
,
12
},
TensorShape
{
12
,
12
}});
test_execution_policy_shallow_copy
<
opr
::
BatchedMatrixMul
,
2
>
(
{
TensorShape
{
12
,
6
,
8
},
TensorShape
{
12
,
8
,
4
}});
}
TEST
(
TestOprDNN
,
ExecutionPolicyShallowCopyPooling
)
{
test_execution_policy_shallow_copy
<
opr
::
Pooling
,
1
>
({
TensorShape
{
1
,
20
,
24
,
24
}});
test_execution_policy_shallow_copy
<
opr
::
PoolingBackward
,
3
>
(
{
TensorShape
{
1
,
20
,
24
,
24
},
TensorShape
{
1
,
20
,
12
,
12
},
TensorShape
{
1
,
20
,
12
,
12
}});
}
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
src/opr/test/dnn/pooling.cpp
浏览文件 @
b8ccc6a2
...
...
@@ -135,7 +135,7 @@ TEST(TestOprDNN, PoolingExePolicy) {
Policy
policy
;
policy
.
strategy
=
strategy
;
auto
pooling
=
opr
::
PoolingForward
::
make
(
input
,
param
,
{},
policy
);
auto
pooling
=
opr
::
PoolingForward
::
make
(
input
,
param
,
policy
);
auto
loss0
=
opr
::
reduce_sum_sqr
(
pooling
,
pooling
.
make_scalar
(
1
));
auto
grad
=
cg
::
grad
(
loss0
,
input
,
true
,
false
);
...
...
@@ -187,7 +187,7 @@ TEST(TestOprDNN, PoolingForwardFastrun) {
Policy
policy
;
policy
.
strategy
=
strategy
;
auto
pooling
=
opr
::
PoolingForward
::
make
(
input
,
param
,
{},
policy
);
auto
pooling
=
opr
::
PoolingForward
::
make
(
input
,
param
,
policy
);
auto
func
=
graph
->
compile
({
make_callback_copy
(
pooling
,
host_y
)});
func
->
execute
().
wait
();
...
...
src/serialization/include/megbrain/serialization/sereg.h
浏览文件 @
b8ccc6a2
...
...
@@ -253,4 +253,11 @@ struct IsComplete<T, decltype(void(sizeof(T)))> : std::true_type {};
__caller_OprRegShallowCopy##_cls##_ins; \
}
/*!
* \brief register opr serialization and shallow copy methods
*/
#define MGB_SEREG_OPR_AND_REG_SHALLOW_COPY(_cls, _arity, _copy) \
MGB_SEREG_OPR(_cls, _arity) \
MGB_REG_OPR_SHALLOW_COPY(_cls, ::mgb::serialization::_copy<_cls>)
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录