提交 a744b3cb 编写于 作者: M Megvii Engine Team

feat(mge/module):add param pack

GitOrigin-RevId: 9cf1dbe44d5fa725b8ba44f43028164051bc9622
上级 afcda610
......@@ -25,5 +25,14 @@ class Parameter(Tensor):
def __init__(self, value, *, dtype=None, device=None, requires_grad=True):
# pylint: disable=super-init-not-called
t = tensor(value, dtype=dtype, device=device, requires_grad=requires_grad)
if isinstance(value, Tensor):
t = value
else:
t = tensor(value, dtype=dtype, device=device, requires_grad=requires_grad)
self.__dict__.update(t.__dict__)
@property
def shape(self):
r"""Return shape of parameter.
"""
return self._symvar.imm_shape
......@@ -16,3 +16,4 @@ from .linear import Linear
from .module import Module
from .pooling import AvgPool2d, MaxPool2d
from .sequential import Sequential
from .parampack import ParamPack
......@@ -168,6 +168,29 @@ class Module(metaclass=ABCMeta):
"""
yield from self._flatten(predicate=_is_buffer, recursive=recursive)
def replace_param(self,
params: dict,
start_pos: int,
seen: Optional[Set[int]] = None):
offset = 0
if seen is None:
seen = set([id(self)])
module_dict = vars(self)
for key in sorted(module_dict):
hash_id = id(module_dict[key])
if hash_id in seen:
continue
seen.add(hash_id)
if isinstance(module_dict[key], Parameter):
if start_pos + offset in params:
assert module_dict[key].shape == params[start_pos +
offset].shape
module_dict[key] = params[start_pos + offset]
offset += 1
if isinstance(module_dict[key], Module):
offset += module_dict[key].replace_param(params, start_pos + offset, seen)
return offset
def named_buffers(
self, prefix: str = "", recursive: bool = True
) -> Iterable[Tuple[str, Buffer]]:
......
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import collections
from typing import Iterable, Optional
import numpy as np
from ..core import Parameter, Tensor
from .module import Module
from .._internal.opr import param_pack_split
class ParamPack(Module):
def __init__(self,
model: Module,
nr_ignore_first:int = 8,
max_size_per_group: int = 10,
max_nr_params_per_group: int = 100):
super().__init__()
self._model = model
self._nr_ignore_first = nr_ignore_first
self._max_size_per_group = max_size_per_group
self._max_nr_params_per_group = max_nr_params_per_group
self._grouped_params = []
self._packed_params = []
params = model.parameters()
self._pack_params(params)
def parameters(self, requires_grad: Optional[bool] = None) -> Iterable[Parameter]:
for param in self._packed_params:
if requires_grad is None or param.requires_grad == requires_grad:
yield param
def _pack_params(self, params: Iterable[Parameter]):
groups = collections.defaultdict(list)
ignored = 0
param_id = 0
for param in params:
if self._nr_ignore_first > ignored:
ignored += 1
self._grouped_params.append([{'tensor': param, 'id': param_id}])
self._packed_params.append(param)
else:
key = (param.dtype, param.device, param.requires_grad)
groups[key].append({'tensor': param, 'id': param_id})
param_id += 1
for (dtype, device, requires_grad) in groups.keys():
dtype_sz = np.dtype(dtype).itemsize
align = device.mem_align
if align < dtype_sz:
align = 1
else:
assert align % dtype_sz == 0
align //= dtype_sz
group = groups[(dtype, device, requires_grad)]
while group:
aligned_pos = []
offset = 0
params = []
idx = 0
while idx < len(group):
param = group[idx]
assert param['tensor'].device == device
padding = (align - (offset & (align - 1))) & (align - 1)
offset += padding
aligned_pos.append(offset)
params.append(param)
offset += int(np.prod(param['tensor'].shape))
idx += 1
if (offset * dtype_sz >=
self._max_size_per_group * 1024 * 1024
or idx >= self._max_nr_params_per_group):
break
group = group[idx:]
if idx == 1:
# ignore param packs with only one item
self._packed_params.append(params[0])
self._grouped_params.append(params)
continue
packed_value = np.zeros((offset, ), dtype=dtype)
for param, pos in zip(params, aligned_pos):
val = param['tensor'].numpy()
packed_value[pos:pos + val.size] = val.flatten()
new_param = Parameter(value=packed_value,
device=device,
dtype=dtype,
requires_grad=requires_grad)
self._packed_params.append(new_param)
self._grouped_params.append(params)
def forward(self, *args, **kwargs):
replace_param = dict()
for i in range(len(self._packed_params)):
packed_param = self._packed_params[i]
grouped_params = self._grouped_params[i]
if len(grouped_params) == 1:
continue
split = param_pack_split(packed_param._symvar,
[i['tensor'].shape for i in grouped_params])
split = [
Parameter(Tensor(i, requires_grad=packed_param.requires_grad))
for i in split
]
for j in range(len(split)):
replace_param[grouped_params[j]['id']] = split[j]
self._model.replace_param(replace_param, 0)
return self._model.forward(*args, **kwargs)
......@@ -168,6 +168,8 @@ class Optimizer(metaclass=ABCMeta):
cg = get_default_graph()
grads = grad_func(loss, params, use_virtual_grad=not cg.is_eager())
if not isinstance(grads, list):
grads = [grads]
assert len(grads) == len(params)
for param, grad in zip(params, grads):
......
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools
import numpy as np
import pytest
import megengine as mge
from megengine.core import tensor
from megengine.functional import cross_entropy_with_softmax, tanh
from megengine.jit import trace
from megengine.module import Linear, Module, ParamPack
from megengine.optimizer import SGD
batch_size = 64
data_shape = (batch_size, 2)
label_shape = (batch_size,)
def minibatch_generator():
while True:
inp_data = np.zeros((batch_size, 2))
label = np.zeros(batch_size, dtype=np.int32)
for i in range(batch_size):
# [x0, x1], sampled from U[-1, 1]
inp_data[i, :] = np.random.rand(2) * 2 - 1
label[i] = 0 if np.prod(inp_data[i]) < 0 else 1
yield inp_data.astype(np.float32), label.astype(np.int32)
def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float:
""" Calculate precision for given data and prediction.
:type data: [[x, y], ...]
:param data: Input data
:type pred: [[x_pred, y_pred], ...]
:param pred: Network output data
"""
correct = 0
assert len(data) == len(pred)
for inp_data, pred_output in zip(data, pred):
label = 0 if np.prod(inp_data) < 0 else 1
pred_label = np.argmax(pred_output)
if pred_label == label:
correct += 1
return float(correct) / len(data)
class XORNet(Module):
def __init__(self):
self.mid_layers = 14
self.num_class = 2
super().__init__()
self.fc0 = Linear(self.num_class, self.mid_layers, bias=True)
self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True)
self.fc2 = Linear(self.mid_layers, self.num_class, bias=True)
def forward(self, x):
x = self.fc0(x)
x = tanh(x)
x = self.fc1(x)
x = tanh(x)
x = self.fc2(x)
return x
@pytest.mark.slow
def test_static_graph_parampack():
net = XORNet()
net = ParamPack(net,
nr_ignore_first=0,
max_size_per_group=10,
max_nr_params_per_group=100)
opt = SGD(
net.parameters(requires_grad=True), lr=0.01, momentum=0.9, weight_decay=5e-4
)
@trace(symbolic=True)
def train(data, label):
pred = net(data)
opt.zero_grad()
loss = cross_entropy_with_softmax(pred, label)
opt.backward(loss)
return loss
@trace(symbolic=True)
def infer(data):
return net(data)
train_dataset = minibatch_generator()
losses = []
for data, label in itertools.islice(train_dataset, 2000):
loss = train(data, label)
loss = loss[0][0]
opt.step()
losses.append(loss.numpy())
assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough"
data, _ = next(train_dataset)
pred = infer(data).numpy()
assert calculate_precision(data, pred) > 0.95, "Test precision must be high enough"
@pytest.mark.slow
def test_dynamic_graph_parampack():
net = XORNet()
net = ParamPack(net,
nr_ignore_first=0,
max_size_per_group=10,
max_nr_params_per_group=100)
opt = SGD(
net.parameters(requires_grad=True), lr=0.01, momentum=0.9, weight_decay=5e-4
)
@trace(symbolic=False)
def train(data, label):
pred = net(data)
opt.zero_grad()
loss = cross_entropy_with_softmax(pred, label)
opt.backward(loss)
return loss
@trace(symbolic=False)
def infer(data):
return net(data)
train_dataset = minibatch_generator()
losses = []
for data, label in itertools.islice(train_dataset, 2000):
loss = train(data, label)
loss = loss[0][0]
opt.step()
losses.append(loss.numpy())
assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough"
data, _ = next(train_dataset)
pred = infer(data).numpy()
assert calculate_precision(data, pred) > 0.95, "Test precision must be high enough"
@pytest.mark.slow
def test_correctness_parampack():
net1 = XORNet()
net2 = XORNet()
params1 = net1.parameters()
params2 = net2.parameters()
for param1, param2 in zip(params1, params2):
param1.set_value(param2.numpy())
net1 = ParamPack(net1,
nr_ignore_first=0,
max_size_per_group=10,
max_nr_params_per_group=100)
opt1 = SGD(
net1.parameters(requires_grad=True), lr=0.01, momentum=0.9, weight_decay=5e-4
)
opt2 = SGD(
net2.parameters(requires_grad=True), lr=0.01, momentum=0.9, weight_decay=5e-4
)
@trace(symbolic=False)
def train1(data, label):
pred = net1(data)
opt1.zero_grad()
loss = cross_entropy_with_softmax(pred, label)
opt1.backward(loss)
return loss
@trace(symbolic=False)
def train2(data, label):
pred = net2(data)
opt2.zero_grad()
loss = cross_entropy_with_softmax(pred, label)
opt2.backward(loss)
return loss
@trace(symbolic=False)
def infer1(data):
return net1(data)
@trace(symbolic=False)
def infer2(data):
return net2(data)
train_dataset = minibatch_generator()
for data, label in itertools.islice(train_dataset, 2000):
train1(data, label)
opt1.step()
train2(data, label)
opt2.step()
data, _ = next(train_dataset)
pred1 = infer1(data).numpy()
pred2 = infer2(data).numpy()
assert np.allclose(pred1, pred2)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册