提交 933188aa 编写于 作者: M Megvii Engine Team

feat(functional/nn): support F.warp_perspective with `mat_idx`

GitOrigin-RevId: 66910c8bd8ed96f888f50653e8cfc4326b12cfe8
上级 8585aa61
...@@ -300,18 +300,18 @@ def remap( ...@@ -300,18 +300,18 @@ def remap(
def warp_affine( def warp_affine(
inp: Tensor, inp: Tensor,
weight: Tensor, mat: Tensor,
out_shape, out_shape: Union[Tuple[int, int], int, Tensor],
border_mode="replicate", border_mode: str = "replicate",
border_val=0, border_val: float = 0.0,
format="NHWC", format: str = "NHWC",
imode="linear", interp_mode: str = "linear",
): ) -> Tensor:
""" """
Batched affine transform on 2D images. Batched affine transform on 2D images.
:param inp: input image. :param inp: input image.
:param weight: weight tensor. :param mat: `(batch, 2, 3)` transformation matrix.
:param out_shape: output tensor shape. :param out_shape: output tensor shape.
:param border_mode: pixel extrapolation method. :param border_mode: pixel extrapolation method.
Default: "wrap". Currently "constant", "reflect", Default: "wrap". Currently "constant", "reflect",
...@@ -319,7 +319,7 @@ def warp_affine( ...@@ -319,7 +319,7 @@ def warp_affine(
:param border_val: value used in case of a constant border. Default: 0 :param border_val: value used in case of a constant border. Default: 0
:param format: "NHWC" as default based on historical concerns, :param format: "NHWC" as default based on historical concerns,
"NCHW" is also supported. Default: "NHWC". "NCHW" is also supported. Default: "NHWC".
:param imode: interpolation methods. Could be "linear", "nearest", "cubic", "area". :param interp_mode: interpolation methods. Could be "linear", "nearest", "cubic", "area".
Default: "linear". Default: "linear".
:return: output tensor. :return: output tensor.
...@@ -330,19 +330,24 @@ def warp_affine( ...@@ -330,19 +330,24 @@ def warp_affine(
On different platforms, different combinations are supported. On different platforms, different combinations are supported.
""" """
op = builtin.WarpAffine( op = builtin.WarpAffine(
border_mode=border_mode, border_val=border_val, format=format, imode=imode border_mode=border_mode,
border_val=border_val,
format=format,
imode=interp_mode,
) )
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, weight, out_shape) (result,) = apply(op, inp, mat, out_shape)
return result return result
def warp_perspective( def warp_perspective(
inp: Tensor, inp: Tensor,
M: Tensor, mat: Tensor,
dsize: Union[Tuple[int, int], int, Tensor], out_shape: Union[Tuple[int, int], int, Tensor],
mat_idx: Optional[Union[Iterable[int], Tensor]] = None,
border_mode: str = "replicate", border_mode: str = "replicate",
border_val: float = 0.0, border_val: float = 0.0,
format: str = "NCHW",
interp_mode: str = "linear", interp_mode: str = "linear",
) -> Tensor: ) -> Tensor:
r""" r"""
...@@ -356,18 +361,23 @@ def warp_perspective( ...@@ -356,18 +361,23 @@ def warp_perspective(
\frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}}
\right) \right)
Optionally, we can set `mat_idx` to assign different transformations to the same image,
otherwise the input images and transformations should be one-to-one correnspondence.
:param inp: input image. :param inp: input image.
:param M: `(batch, 3, 3)` transformation matrix. :param mat: `(batch, 3, 3)` transformation matrix.
:param dsize: `(h, w)` size of the output image. :param out_shape: `(h, w)` size of the output image.
:param mat_idx: `(batch, )` image batch idx assigned to each matrix. Default: None
:param border_mode: pixel extrapolation method. :param border_mode: pixel extrapolation method.
Default: "replicate". Currently also support "constant", "reflect", Default: "replicate". Currently also support "constant", "reflect",
"reflect_101", "wrap". "reflect_101", "wrap".
:param border_val: value used in case of a constant border. Default: 0 :param border_val: value used in case of a constant border. Default: 0
:param format: "NHWC" is also supported. Default: "NCHW".
:param interp_mode: interpolation methods. :param interp_mode: interpolation methods.
Default: "linear". Currently only support "linear" mode. Default: "linear". Currently only support "linear" mode.
:return: output tensor. :return: output tensor.
Note: .. note::
The transformation matrix is the inverse of that used by `cv2.warpPerspective`. The transformation matrix is the inverse of that used by `cv2.warpPerspective`.
...@@ -398,11 +408,15 @@ def warp_perspective( ...@@ -398,11 +408,15 @@ def warp_perspective(
""" """
op = builtin.WarpPerspective( op = builtin.WarpPerspective(
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val imode=interp_mode, bmode=border_mode, format=format, border_val=border_val
) )
inp, M = utils.convert_inputs(inp, M) inp, mat = utils.convert_inputs(inp, mat)
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, M, dsize) if mat_idx is not None:
mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, mat, mat_idx, out_shape)
return result
(result,) = apply(op, inp, mat, out_shape)
return result return result
......
...@@ -370,6 +370,32 @@ def test_warp_perspective(): ...@@ -370,6 +370,32 @@ def test_warp_perspective():
) )
def test_warp_perspective_mat_idx():
inp_shape = (2, 1, 4, 4)
x = tensor(np.arange(32, dtype=np.float32).reshape(inp_shape))
M_shape = (1, 3, 3)
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
M = tensor(
np.array(
[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
).reshape(M_shape)
)
M = F.concat([M,] * 4, 0)
outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
np.testing.assert_equal(
outp.numpy(),
np.array(
[
[[[5.0, 6.0], [9.0, 10.0]]],
[[[21.0, 22.0], [25.0, 26.0]]],
[[[21.0, 22.0], [25.0, 26.0]]],
[[[5.0, 6.0], [9.0, 10.0]]],
],
dtype=np.float32,
),
)
def test_warp_affine(): def test_warp_affine():
inp_shape = (1, 3, 3, 3) inp_shape = (1, 3, 3, 3)
x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册