提交 933188aa 编写于 作者: M Megvii Engine Team

feat(functional/nn): support F.warp_perspective with `mat_idx`

GitOrigin-RevId: 66910c8bd8ed96f888f50653e8cfc4326b12cfe8
上级 8585aa61
...@@ -300,18 +300,18 @@ def remap( ...@@ -300,18 +300,18 @@ def remap(
def warp_affine( def warp_affine(
inp: Tensor, inp: Tensor,
weight: Tensor, mat: Tensor,
out_shape, out_shape: Union[Tuple[int, int], int, Tensor],
border_mode="replicate", border_mode: str = "replicate",
border_val=0, border_val: float = 0.0,
format="NHWC", format: str = "NHWC",
imode="linear", interp_mode: str = "linear",
): ) -> Tensor:
""" """
Batched affine transform on 2D images. Batched affine transform on 2D images.
:param inp: input image. :param inp: input image.
:param weight: weight tensor. :param mat: `(batch, 2, 3)` transformation matrix.
:param out_shape: output tensor shape. :param out_shape: output tensor shape.
:param border_mode: pixel extrapolation method. :param border_mode: pixel extrapolation method.
Default: "wrap". Currently "constant", "reflect", Default: "wrap". Currently "constant", "reflect",
...@@ -319,30 +319,35 @@ def warp_affine( ...@@ -319,30 +319,35 @@ def warp_affine(
:param border_val: value used in case of a constant border. Default: 0 :param border_val: value used in case of a constant border. Default: 0
:param format: "NHWC" as default based on historical concerns, :param format: "NHWC" as default based on historical concerns,
"NCHW" is also supported. Default: "NHWC". "NCHW" is also supported. Default: "NHWC".
:param imode: interpolation methods. Could be "linear", "nearest", "cubic", "area". :param interp_mode: interpolation methods. Could be "linear", "nearest", "cubic", "area".
Default: "linear". Default: "linear".
:return: output tensor. :return: output tensor.
.. note:: .. note::
Here all available options for params are listed, Here all available options for params are listed,
however it does not mean that you can use all the combinations. however it does not mean that you can use all the combinations.
On different platforms, different combinations are supported. On different platforms, different combinations are supported.
""" """
op = builtin.WarpAffine( op = builtin.WarpAffine(
border_mode=border_mode, border_val=border_val, format=format, imode=imode border_mode=border_mode,
border_val=border_val,
format=format,
imode=interp_mode,
) )
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, weight, out_shape) (result,) = apply(op, inp, mat, out_shape)
return result return result
def warp_perspective( def warp_perspective(
inp: Tensor, inp: Tensor,
M: Tensor, mat: Tensor,
dsize: Union[Tuple[int, int], int, Tensor], out_shape: Union[Tuple[int, int], int, Tensor],
mat_idx: Optional[Union[Iterable[int], Tensor]] = None,
border_mode: str = "replicate", border_mode: str = "replicate",
border_val: float = 0.0, border_val: float = 0.0,
format: str = "NCHW",
interp_mode: str = "linear", interp_mode: str = "linear",
) -> Tensor: ) -> Tensor:
r""" r"""
...@@ -356,20 +361,25 @@ def warp_perspective( ...@@ -356,20 +361,25 @@ def warp_perspective(
\frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}}
\right) \right)
Optionally, we can set `mat_idx` to assign different transformations to the same image,
otherwise the input images and transformations should be one-to-one correnspondence.
:param inp: input image. :param inp: input image.
:param M: `(batch, 3, 3)` transformation matrix. :param mat: `(batch, 3, 3)` transformation matrix.
:param dsize: `(h, w)` size of the output image. :param out_shape: `(h, w)` size of the output image.
:param mat_idx: `(batch, )` image batch idx assigned to each matrix. Default: None
:param border_mode: pixel extrapolation method. :param border_mode: pixel extrapolation method.
Default: "replicate". Currently also support "constant", "reflect", Default: "replicate". Currently also support "constant", "reflect",
"reflect_101", "wrap". "reflect_101", "wrap".
:param border_val: value used in case of a constant border. Default: 0 :param border_val: value used in case of a constant border. Default: 0
:param format: "NHWC" is also supported. Default: "NCHW".
:param interp_mode: interpolation methods. :param interp_mode: interpolation methods.
Default: "linear". Currently only support "linear" mode. Default: "linear". Currently only support "linear" mode.
:return: output tensor. :return: output tensor.
Note: .. note::
The transformation matrix is the inverse of that used by `cv2.warpPerspective`. The transformation matrix is the inverse of that used by `cv2.warpPerspective`.
Examples: Examples:
...@@ -398,11 +408,15 @@ def warp_perspective( ...@@ -398,11 +408,15 @@ def warp_perspective(
""" """
op = builtin.WarpPerspective( op = builtin.WarpPerspective(
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val imode=interp_mode, bmode=border_mode, format=format, border_val=border_val
) )
inp, M = utils.convert_inputs(inp, M) inp, mat = utils.convert_inputs(inp, mat)
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, M, dsize) if mat_idx is not None:
mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device)
(result,) = apply(op, inp, mat, mat_idx, out_shape)
return result
(result,) = apply(op, inp, mat, out_shape)
return result return result
......
...@@ -370,6 +370,32 @@ def test_warp_perspective(): ...@@ -370,6 +370,32 @@ def test_warp_perspective():
) )
def test_warp_perspective_mat_idx():
inp_shape = (2, 1, 4, 4)
x = tensor(np.arange(32, dtype=np.float32).reshape(inp_shape))
M_shape = (1, 3, 3)
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
M = tensor(
np.array(
[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
).reshape(M_shape)
)
M = F.concat([M,] * 4, 0)
outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
np.testing.assert_equal(
outp.numpy(),
np.array(
[
[[[5.0, 6.0], [9.0, 10.0]]],
[[[21.0, 22.0], [25.0, 26.0]]],
[[[21.0, 22.0], [25.0, 26.0]]],
[[[5.0, 6.0], [9.0, 10.0]]],
],
dtype=np.float32,
),
)
def test_warp_affine(): def test_warp_affine():
inp_shape = (1, 3, 3, 3) inp_shape = (1, 3, 3, 3)
x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册