Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
90c8a58c
MegEngine
项目概览
MegEngine 天元
/
MegEngine
大约 1 年 前同步成功
通知
399
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
90c8a58c
编写于
2月 24, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
docs(docstring): add pad docstring
GitOrigin-RevId: eaf6a874560de1298f09ad01d055fb56cea807f9
上级
5f4501e0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
84 addition
and
6 deletion
+84
-6
imperative/python/megengine/functional/nn.py
imperative/python/megengine/functional/nn.py
+40
-3
imperative/python/megengine/module/padding.py
imperative/python/megengine/module/padding.py
+44
-3
未找到文件。
imperative/python/megengine/functional/nn.py
浏览文件 @
90c8a58c
...
...
@@ -1894,9 +1894,46 @@ def pad(
mode
:
str
=
"constant"
,
constant_value
:
float
=
0.0
,
)
->
Tensor
:
"""
Pad is python warpper for padding opr in megbrain, can padding in random one of the max 7 dimensions.
Supported constant, edge(replicate) and reflect mode, constatnt is the default mode.
r
"""Pads the input tensor.
Args:
pad_width: A tuple. Each element in the tuple is the tuple of 2-elements,
the 2 elements represent the padding size on both sides of the current dimension, ``(front_offset, back_offset)``
mode: One of the following string values. Default: ``'constant'``
* ``'constant'``: Pads with a constant value.
* ``'reflect'``: Pads with the edge values of tensor.
* ``'replicate'``: Pads with the reflection of the tensor mirrored on the first and last values of the tensor along each axis.
constant_val: Fill value for ``'constant'`` padding. Default: 0
Examples:
>>> import numpy as np
>>> inp = Tensor([[1., 2., 3.],[4., 5., 6.]])
>>> inp
Tensor([[1. 2. 3.]
[4. 5. 6.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1),), mode="constant")
Tensor([[0. 0. 0.]
[1. 2. 3.]
[4. 5. 6.]
[0. 0. 0.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1),), mode="constant", constant_value=9)
Tensor([[9. 9. 9.]
[1. 2. 3.]
[4. 5. 6.]
[9. 9. 9.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1), (1, 2)), mode="reflect")
Tensor([[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1), (1, 2)), mode="replicate")
Tensor([[1. 1. 2. 3. 3. 3.]
[1. 1. 2. 3. 3. 3.]
[4. 4. 5. 6. 6. 6.]
[4. 4. 5. 6. 6. 6.]], device=xpux:0)
"""
p_offsets
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
...
...
imperative/python/megengine/module/padding.py
浏览文件 @
90c8a58c
...
...
@@ -5,9 +5,50 @@ from .module import Module
class
Pad
(
Module
):
"""
Pad is python warpper for padding opr in megbrain, can padding in random one of the max 7 dimensions.
Supported constant, edge(replicate) and reflect mode, constatnt is the default mode.
r
"""Pads the input tensor.
Args:
pad_width: A tuple. Each element in the tuple is the tuple of 2-elements,
the 2 elements represent the padding size on both sides of the current dimension, ``(front_offset, back_offset)``
mode: One of the following string values. Default: ``'constant'``
* ``'constant'``: Pads with a constant value.
* ``'reflect'``: Pads with the edge values of tensor.
* ``'replicate'``: Pads with the reflection of the tensor mirrored on the first and last values of the tensor along each axis.
constant_val: Fill value for ``'constant'`` padding. Default: 0
Examples:
>>> import numpy as np
>>> inp = Tensor([[1., 2., 3.],[4., 5., 6.]])
>>> inp
Tensor([[1. 2. 3.]
[4. 5. 6.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1),), mode="constant")
>>> m(inp)
Tensor([[0. 0. 0.]
[1. 2. 3.]
[4. 5. 6.]
[0. 0. 0.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1),), mode="constant", constant_val=9)
>>> m(inp)
Tensor([[9. 9. 9.]
[1. 2. 3.]
[4. 5. 6.]
[9. 9. 9.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="reflect")
>>> m(inp)
Tensor([[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="replicate")
>>> m(inp)
Tensor([[1. 1. 2. 3. 3. 3.]
[1. 1. 2. 3. 3. 3.]
[4. 4. 5. 6. 6. 6.]
[4. 4. 5. 6. 6. 6.]], device=xpux:0)
"""
def
__init__
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录