Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
7f024072
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
403
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
7f024072
编写于
5月 30, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
perf(dnn): speed up pad kernel
GitOrigin-RevId: 33db700687c04ee4d813e3b3fa24b6e35de4036c
上级
2886245b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
123 addition
and
2 deletion
+123
-2
dnn/src/cuda/padding/opr_impl.cpp
dnn/src/cuda/padding/opr_impl.cpp
+19
-2
dnn/src/cuda/padding/padding.cu
dnn/src/cuda/padding/padding.cu
+99
-0
dnn/src/cuda/padding/padding.cuh
dnn/src/cuda/padding/padding.cuh
+5
-0
未找到文件。
dnn/src/cuda/padding/opr_impl.cpp
浏览文件 @
7f024072
...
...
@@ -7,6 +7,10 @@
namespace
megdnn
{
namespace
cuda
{
bool
is_conv_pad
(
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
])
{
return
(
offsets
[
0
]
==
offsets
[
2
]
&&
offsets
[
0
]
==
0
);
}
void
PaddingForwardImpl
::
exec
(
_megdnn_tensor_in
src
,
_megdnn_tensor_out
dst
)
{
forward_check_exec
(
src
.
layout
,
dst
.
layout
);
SmallVector
<
size_t
>
offsets
(
get_offsets
());
...
...
@@ -16,6 +20,18 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
offsets
[
5
],
offsets
[
6
],
offsets
[
7
],
offsets
[
8
],
offsets
[
9
],
offsets
[
10
],
offsets
[
11
],
offsets
[
12
],
offsets
[
13
]};
auto
stream
=
cuda_stream
(
this
->
handle
());
if
(
src
.
layout
.
ndim
==
4
&&
is_conv_pad
(
param_offsets
))
{
#define cb(DType) \
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \
using ctype = typename DTypeTrait<DType>::ctype; \
padding::pad4d_forward_proxy<ctype>( \
src, dst, param_offsets, uint32_t(param().padding_mode), \
param().padding_val, stream); \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
}
else
{
#define cb(DType) \
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \
using ctype = typename DTypeTrait<DType>::ctype; \
...
...
@@ -23,9 +39,10 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
src, dst, param_offsets, uint32_t(param().padding_mode), \
param().padding_val, stream); \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
}
}
void
PaddingBackwardImpl
::
exec
(
_megdnn_tensor_in
src
,
_megdnn_tensor_out
dst
)
{
...
...
dnn/src/cuda/padding/padding.cu
浏览文件 @
7f024072
#include <thrust/pair.h>
#include <algorithm>
#include <cstring>
#include <iostream>
...
...
@@ -94,6 +95,55 @@ __global__ void paddingReflect_kernel(
}
}
__device__
inline
thrust
::
pair
<
int64_t
,
int64_t
>
get_index_mapping2d
(
int64_t
input_dim_x
,
int64_t
input_dim_y
,
int64_t
output_dim_x
,
int64_t
output_dim_y
,
int64_t
pad_l
,
int64_t
pad_t
,
int64_t
output_xy
,
int
y_shift
,
int
z_shift
,
int
nplane
)
{
// 3D grid of 1D blocks
auto
input_offset
=
((
blockIdx
.
y
+
y_shift
)
+
(
blockIdx
.
z
+
z_shift
)
*
nplane
)
*
input_dim_x
*
input_dim_y
;
auto
output_offset
=
((
blockIdx
.
y
+
y_shift
)
+
(
blockIdx
.
z
+
z_shift
)
*
nplane
)
*
output_dim_x
*
output_dim_y
;
auto
output_x
=
output_xy
%
output_dim_x
;
auto
output_y
=
output_xy
/
output_dim_x
;
auto
i_start_x
=
::
max
(
int64_t
(
0
),
-
pad_l
);
auto
i_start_y
=
::
max
(
int64_t
(
0
),
-
pad_t
);
auto
o_start_x
=
::
max
(
int64_t
(
0
),
pad_l
);
auto
o_start_y
=
::
max
(
int64_t
(
0
),
pad_t
);
auto
input_x
=
::
abs
(
output_x
-
pad_l
)
-
::
abs
(
output_x
-
(
input_dim_x
+
pad_l
-
1
))
-
output_x
+
2
*
pad_l
+
input_dim_x
-
1
-
o_start_x
+
i_start_x
;
auto
input_y
=
::
abs
(
output_y
-
pad_t
)
-
::
abs
(
output_y
-
(
input_dim_y
+
pad_t
-
1
))
-
output_y
+
2
*
pad_t
+
input_dim_y
-
1
-
o_start_y
+
i_start_y
;
return
thrust
::
make_pair
<
int64_t
,
int64_t
>
(
input_offset
+
input_y
*
input_dim_x
+
input_x
,
output_offset
+
output_y
*
output_dim_x
+
output_x
);
}
template
<
typename
T
>
__global__
void
reflection_pad4d_kernel
(
const
T
*
const
input
,
T
*
const
output
,
int64_t
input_dim_x
,
int64_t
input_dim_y
,
int
pad_t
,
int
pad_b
,
int
pad_l
,
int
pad_r
,
int
y_shift
,
int
z_shift
,
int
nplane
)
{
auto
output_xy
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
auto
output_dim_x
=
input_dim_x
+
pad_l
+
pad_r
;
auto
output_dim_y
=
input_dim_y
+
pad_t
+
pad_b
;
if
(
output_xy
<
output_dim_x
*
output_dim_y
)
{
auto
index_pair
=
get_index_mapping2d
(
input_dim_x
,
input_dim_y
,
output_dim_x
,
output_dim_y
,
pad_l
,
pad_t
,
output_xy
,
y_shift
,
z_shift
,
nplane
);
output
[
index_pair
.
second
]
=
input
[
index_pair
.
first
];
}
}
template
<
typename
T
>
__global__
void
paddingConstBackward_kernel
(
const
size_t
ndim
,
const
size_t
total_in_nr
,
const
T
*
const
src
,
T
*
const
dst
,
...
...
@@ -198,6 +248,44 @@ void padding_forward_proxy(
after_kernel_launch
();
}
template
<
typename
T
>
void
pad4d_forward_proxy
(
const
TensorND
&
src
,
const
TensorND
&
dst
,
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
],
uint32_t
mode
,
const
float_t
padding_val
,
cudaStream_t
stream
)
{
if
(
mode
==
param_enumv
::
Padding
::
PaddingMode
::
REFLECT
)
{
size_t
pad_t
=
offsets
[
4
];
size_t
pad_b
=
offsets
[
5
];
size_t
pad_l
=
offsets
[
6
];
size_t
pad_r
=
offsets
[
7
];
size_t
nbatch
=
src
.
layout
.
shape
[
0
];
size_t
nplane
=
src
.
layout
.
shape
[
1
];
size_t
input_h
=
src
.
layout
.
shape
[
2
];
size_t
input_w
=
src
.
layout
.
shape
[
3
];
size_t
output_plane_size
=
dst
.
layout
.
shape
[
2
]
*
dst
.
layout
.
shape
[
3
];
dim3
block_size
(
output_plane_size
>
256
?
256
:
output_plane_size
);
for
(
size_t
block_y
=
0
;
block_y
<
nplane
;
block_y
+=
65535
)
{
size_t
block_y_size
=
std
::
min
(
nplane
-
block_y
,
static_cast
<
size_t
>
(
65535
));
for
(
size_t
block_z
=
0
;
block_z
<
nbatch
;
block_z
+=
65535
)
{
size_t
block_z_size
=
std
::
min
(
nbatch
-
block_z
,
static_cast
<
size_t
>
(
65535
));
dim3
grid_size
(
DIVUP
(
output_plane_size
,
static_cast
<
size_t
>
(
256
)),
block_y_size
,
block_z_size
);
reflection_pad4d_kernel
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
src
.
ptr
<
T
>
(),
dst
.
ptr
<
T
>
(),
input_w
,
input_h
,
pad_t
,
pad_b
,
pad_l
,
pad_r
,
block_y
,
block_z
,
nplane
);
}
}
after_kernel_launch
();
}
else
{
padding_forward_proxy
<
T
>
(
src
,
dst
,
offsets
,
mode
,
padding_val
,
stream
);
}
}
template
<
typename
T
>
void
padding_backward_proxy
(
const
TensorND
&
src
,
const
TensorND
&
dst
,
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
],
...
...
@@ -250,6 +338,17 @@ MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
#undef cb
#undef INST
#define INST(T) \
template void pad4d_forward_proxy<T>( \
const TensorND& src, const TensorND& dst, \
size_t offsets[MEGDNN_MAX_NDIM * 2], uint32_t mode, \
const float_t padding_val, cudaStream_t stream);
#define cb(DType) INST(typename DTypeTrait<DType>::ctype)
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
#undef INST
#define INST(T) \
template void padding_backward_proxy<T>( \
const TensorND& src, const TensorND& dst, \
...
...
dnn/src/cuda/padding/padding.cuh
浏览文件 @
7f024072
...
...
@@ -13,6 +13,11 @@ void padding_forward_proxy(
const
TensorND
&
src
,
const
TensorND
&
dst
,
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
],
uint32_t
mode
,
const
float_t
padding_val
,
cudaStream_t
stream
);
template
<
typename
T
>
void
pad4d_forward_proxy
(
const
TensorND
&
src
,
const
TensorND
&
dst
,
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
],
uint32_t
mode
,
const
float_t
padding_val
,
cudaStream_t
stream
);
template
<
typename
T
>
void
padding_backward_proxy
(
const
TensorND
&
src
,
const
TensorND
&
dst
,
size_t
offsets
[
MEGDNN_MAX_NDIM
*
2
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录