提交 7c5d8401 编写于 作者: M Megvii Engine Team

refactor(lite): refactor lite example

GitOrigin-RevId: 3eac582fb2757742a83a9d52f32246ad59b29401
上级 aa80d988
file (GLOB_RECURSE SOURCES ./*.cpp)
add_executable(lite_examples ${SOURCES})
target_include_directories(lite_examples PUBLIC ./)
if(LITE_BUILD_WITH_RKNPU)
#rknn sdk1.0.0 depend on libc++_shared, use gold to remove NEEDED so symbol check
......@@ -33,6 +34,7 @@ if(LITE_BUILD_WITH_RKNPU)
endif()
target_link_libraries(lite_examples_depends_shared lite_shared)
target_include_directories(lite_examples_depends_shared PUBLIC ./)
if(UNIX)
if(APPLE OR ANDROID)
......
......@@ -49,57 +49,20 @@ ExampleFuncMap* get_example_function_map();
bool register_example(std::string example_name, const ExampleFunc& fuction);
template <int>
struct Register;
#if LITE_BUILD_WITH_MGE
bool basic_load_from_path(const Args& args);
bool basic_load_from_path_with_loader(const Args& args);
bool basic_load_from_memory(const Args& args);
bool cpu_affinity(const Args& args);
bool network_share_same_weights(const Args& args);
bool reset_input(const Args& args);
bool reset_input_output(const Args& args);
bool config_user_allocator(const Args& args);
bool register_cryption_method(const Args& args);
bool update_cryption_key(const Args& args);
bool async_forward(const Args& args);
bool set_input_callback(const Args& arg);
bool set_output_callback(const Args& arg);
bool picture_classification(const Args& arg);
bool detect_yolox(const Args& arg);
#if LITE_WITH_CUDA
bool load_from_path_run_cuda(const Args& args);
bool device_input(const Args& args);
bool device_input_output(const Args& args);
bool pinned_host_input(const Args& args);
#endif
#endif
} // namespace example
} // namespace lite
#if LITE_BUILD_WITH_MGE
bool basic_c_interface(const lite::example::Args& args);
bool device_io_c_interface(const lite::example::Args& args);
bool async_c_interface(const lite::example::Args& args);
#endif
#define CONCAT_IMPL(a, b) a##b
#define MACRO_CONCAT(a, b) CONCAT_IMPL(a, b)
#define REGIST_EXAMPLE(name_, func_) REGIST_EXAMPLE_WITH_NUM(__COUNTER__, name_, func_)
#define REGIST_EXAMPLE_WITH_NUM(number_, name_, func_) \
template <> \
struct Register<number_> { \
Register() { register_example(name_, func_); } \
}; \
namespace { \
Register<number_> MACRO_CONCAT(example_function_, number_); \
#define REGIST_EXAMPLE_WITH_NUM(number_, name_, func_) \
struct Register_##func_ { \
Register_##func_() { lite::example::register_example(name_, func_); } \
}; \
namespace { \
Register_##func_ MACRO_CONCAT(func_, number_); \
}
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -60,7 +60,8 @@ bool lite::example::register_example(
std::string example_name, const ExampleFunc& fuction) {
auto map = get_example_function_map();
if (map->find(example_name) != map->end()) {
printf("Error!!! This example is registed yet\n");
printf("example_name: %s Error!!! This example is registed yet\n",
example_name.c_str());
return false;
}
(*map)[example_name] = fuction;
......@@ -142,41 +143,5 @@ int main(int argc, char** argv) {
return -1;
}
}
namespace lite {
namespace example {
#if LITE_BUILD_WITH_MGE
#if LITE_WITH_CUDA
REGIST_EXAMPLE("load_from_path_run_cuda", load_from_path_run_cuda);
#endif
REGIST_EXAMPLE("basic_load_from_path", basic_load_from_path);
REGIST_EXAMPLE("basic_load_from_path_with_loader", basic_load_from_path_with_loader);
REGIST_EXAMPLE("basic_load_from_memory", basic_load_from_memory);
REGIST_EXAMPLE("cpu_affinity", cpu_affinity);
REGIST_EXAMPLE("register_cryption_method", register_cryption_method);
REGIST_EXAMPLE("update_cryption_key", update_cryption_key);
REGIST_EXAMPLE("network_share_same_weights", network_share_same_weights);
REGIST_EXAMPLE("reset_input", reset_input);
REGIST_EXAMPLE("reset_input_output", reset_input_output);
REGIST_EXAMPLE("config_user_allocator", config_user_allocator);
REGIST_EXAMPLE("async_forward", async_forward);
REGIST_EXAMPLE("set_input_callback", set_input_callback);
REGIST_EXAMPLE("set_output_callback", set_output_callback);
REGIST_EXAMPLE("basic_c_interface", basic_c_interface);
REGIST_EXAMPLE("device_io_c_interface", device_io_c_interface);
REGIST_EXAMPLE("async_c_interface", async_c_interface);
REGIST_EXAMPLE("picture_classification", picture_classification);
REGIST_EXAMPLE("detect_yolox", detect_yolox);
#if LITE_WITH_CUDA
REGIST_EXAMPLE("device_input", device_input);
REGIST_EXAMPLE("device_input_output", device_input_output);
REGIST_EXAMPLE("pinned_host_input", pinned_host_input);
#endif
#endif
} // namespace example
} // namespace lite
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -10,7 +10,7 @@
*/
#include <thread>
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>
......@@ -77,61 +77,8 @@ void output_data_info(std::shared_ptr<Network> network, size_t output_size) {
}
} // namespace
#if LITE_WITH_CUDA
bool lite::example::load_from_path_run_cuda(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
set_log_level(LiteLogLevel::DEBUG);
//! config the network running in CUDA device
lite::Config config{false, -1, LiteDeviceType::LITE_CUDA};
//! set NetworkIO
NetworkIO network_io;
std::string input_name = "img0_comp_fullface";
bool is_host = false;
IO device_input{input_name, is_host};
network_io.inputs.push_back(device_input);
//! create and load the network
std::shared_ptr<Network> network = std::make_shared<Network>(config, network_io);
network->load_model(network_path);
std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
Layout input_layout = input_tensor->get_layout();
//! read data from numpy data file
auto src_tensor = parse_npy(input_path);
//! malloc the device memory
auto tensor_device = Tensor(LiteDeviceType::LITE_CUDA, input_layout);
//! copy to the device memory
tensor_device.copy_from(*src_tensor);
//! Now the device memory if filled with user input data, set it to the
//! input tensor
input_tensor->reset(tensor_device.get_memory_ptr(), input_layout);
//! forward
{
lite::Timer ltimer("warmup");
network->forward();
network->wait();
ltimer.print_used_time(0);
}
lite::Timer ltimer("forward_iter");
for (int i = 0; i < 10; i++) {
ltimer.reset_start();
network->forward();
network->wait();
ltimer.print_used_time(i);
}
//! get the output data or read tensor set in network_in
size_t output_size = network->get_all_output_name().size();
output_info(network, output_size);
output_data_info(network, output_size);
return true;
}
#endif
bool lite::example::basic_load_from_path(const Args& args) {
namespace {
bool basic_load_from_path(const Args& args) {
set_log_level(LiteLogLevel::DEBUG);
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -193,7 +140,7 @@ bool lite::example::basic_load_from_path(const Args& args) {
return true;
}
bool lite::example::basic_load_from_path_with_loader(const Args& args) {
bool basic_load_from_path_with_loader(const Args& args) {
set_log_level(LiteLogLevel::DEBUG);
lite::set_loader_lib_path(args.loader_path);
std::string network_path = args.model_path;
......@@ -251,7 +198,7 @@ bool lite::example::basic_load_from_path_with_loader(const Args& args) {
return true;
}
bool lite::example::basic_load_from_memory(const Args& args) {
bool basic_load_from_memory(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -307,7 +254,7 @@ bool lite::example::basic_load_from_memory(const Args& args) {
return true;
}
bool lite::example::async_forward(const Args& args) {
bool async_forward(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
Config config;
......@@ -366,7 +313,7 @@ bool lite::example::async_forward(const Args& args) {
return true;
}
bool lite::example::set_input_callback(const Args& args) {
bool set_input_callback(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
Config config;
......@@ -433,7 +380,7 @@ bool lite::example::set_input_callback(const Args& args) {
return true;
}
bool lite::example::set_output_callback(const Args& args) {
bool set_output_callback(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
Config config;
......@@ -500,7 +447,73 @@ bool lite::example::set_output_callback(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("basic_load_from_path", basic_load_from_path);
REGIST_EXAMPLE("basic_load_from_path_with_loader", basic_load_from_path_with_loader);
REGIST_EXAMPLE("basic_load_from_memory", basic_load_from_memory);
REGIST_EXAMPLE("async_forward", async_forward);
REGIST_EXAMPLE("set_input_callback", set_input_callback);
REGIST_EXAMPLE("set_output_callback", set_output_callback);
#if LITE_WITH_CUDA
namespace {
bool load_from_path_run_cuda(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
set_log_level(LiteLogLevel::DEBUG);
//! config the network running in CUDA device
lite::Config config{false, -1, LiteDeviceType::LITE_CUDA};
//! set NetworkIO
NetworkIO network_io;
std::string input_name = "img0_comp_fullface";
bool is_host = false;
IO device_input{input_name, is_host};
network_io.inputs.push_back(device_input);
//! create and load the network
std::shared_ptr<Network> network = std::make_shared<Network>(config, network_io);
network->load_model(network_path);
std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
Layout input_layout = input_tensor->get_layout();
//! read data from numpy data file
auto src_tensor = parse_npy(input_path);
//! malloc the device memory
auto tensor_device = Tensor(LiteDeviceType::LITE_CUDA, input_layout);
//! copy to the device memory
tensor_device.copy_from(*src_tensor);
//! Now the device memory if filled with user input data, set it to the
//! input tensor
input_tensor->reset(tensor_device.get_memory_ptr(), input_layout);
//! forward
{
lite::Timer ltimer("warmup");
network->forward();
network->wait();
ltimer.print_used_time(0);
}
lite::Timer ltimer("forward_iter");
for (int i = 0; i < 10; i++) {
ltimer.reset_start();
network->forward();
network->wait();
ltimer.print_used_time(i);
}
//! get the output data or read tensor set in network_in
size_t output_size = network->get_all_output_name().size();
output_info(network, output_size);
output_data_info(network, output_size);
return true;
}
} // namespace
REGIST_EXAMPLE("load_from_path_run_cuda", load_from_path_run_cuda);
#endif
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -9,13 +9,14 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
using namespace lite;
using namespace example;
bool lite::example::cpu_affinity(const Args& args) {
namespace {
bool cpu_affinity(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -65,6 +66,9 @@ bool lite::example::cpu_affinity(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("cpu_affinity", cpu_affinity);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -10,7 +10,7 @@
*/
#include <thread>
#include "../../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>
......@@ -289,6 +289,10 @@ void decode_outputs(
void draw_objects(
uint8_t* image, int width, int height, int channel,
const std::vector<Object>& objects) {
(void)image;
(void)width;
(void)height;
(void)channel;
for (size_t i = 0; i < objects.size(); i++) {
const Object& obj = objects[i];
......@@ -297,9 +301,7 @@ void draw_objects(
}
}
} // namespace
bool lite::example::detect_yolox(const Args& args) {
bool detect_yolox(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -332,6 +334,9 @@ bool lite::example::detect_yolox(const Args& args) {
stbi_image_free(image);
return 0;
}
} // namespace
REGIST_EXAMPLE("detect_yolox", detect_yolox);
#endif
......
......@@ -10,7 +10,7 @@
*/
#include <thread>
#include "../../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>
......@@ -80,9 +80,8 @@ void classfication_process(
}
printf("output tensor sum is %f\n", sum);
}
} // namespace
bool lite::example::picture_classification(const Args& args) {
bool picture_classification(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -109,6 +108,9 @@ bool lite::example::picture_classification(const Args& args) {
class_id, score);
return 0;
}
} // namespace
REGIST_EXAMPLE("picture_classification", picture_classification);
#endif
......
......@@ -10,15 +10,17 @@
*/
#include <thread>
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
#include "misc.h"
using namespace lite;
using namespace example;
#if LITE_WITH_CUDA
bool lite::example::device_input(const Args& args) {
namespace {
bool device_input(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -73,7 +75,7 @@ bool lite::example::device_input(const Args& args) {
return true;
}
bool lite::example::device_input_output(const Args& args) {
bool device_input_output(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -136,7 +138,7 @@ bool lite::example::device_input_output(const Args& args) {
return true;
}
bool lite::example::pinned_host_input(const Args& args) {
bool pinned_host_input(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -181,6 +183,11 @@ bool lite::example::pinned_host_input(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("device_input", device_input);
REGIST_EXAMPLE("device_input_output", device_input_output);
REGIST_EXAMPLE("pinned_host_input", pinned_host_input);
#endif
#endif
......
......@@ -9,7 +9,7 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#include "misc.h"
#if LITE_BUILD_WITH_MGE
#include "lite-c/global_c.h"
......@@ -218,5 +218,10 @@ bool async_c_interface(const lite::example::Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
REGIST_EXAMPLE("basic_c_interface", basic_c_interface);
REGIST_EXAMPLE("device_io_c_interface", device_io_c_interface);
REGIST_EXAMPLE("async_c_interface", async_c_interface);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -9,13 +9,15 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
using namespace lite;
using namespace example;
bool lite::example::network_share_same_weights(const Args& args) {
namespace {
bool network_share_same_weights(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -75,5 +77,9 @@ bool lite::example::network_share_same_weights(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("network_share_same_weights", network_share_same_weights);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -9,13 +9,15 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
using namespace lite;
using namespace example;
bool lite::example::reset_input(const Args& args) {
namespace {
bool reset_input(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
lite::Config config;
......@@ -53,7 +55,7 @@ bool lite::example::reset_input(const Args& args) {
return true;
}
bool lite::example::reset_input_output(const Args& args) {
bool reset_input_output(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
lite::Config config;
......@@ -92,5 +94,10 @@ bool lite::example::reset_input_output(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("reset_input", reset_input);
REGIST_EXAMPLE("reset_input_output", reset_input_output);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -9,7 +9,7 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
using namespace lite;
using namespace example;
......@@ -42,9 +42,8 @@ public:
#endif
};
};
} // namespace
bool lite::example::config_user_allocator(const Args& args) {
bool config_user_allocator(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -87,5 +86,9 @@ bool lite::example::config_user_allocator(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("config_user_allocator", config_user_allocator);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -9,7 +9,7 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "../example.h"
#include "example.h"
#if LITE_BUILD_WITH_MGE
using namespace lite;
......@@ -31,9 +31,8 @@ std::vector<uint8_t> decrypt_model(
return {};
}
}
} // namespace
bool lite::example::register_cryption_method(const Args& args) {
bool register_cryption_method(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -75,7 +74,7 @@ bool lite::example::register_cryption_method(const Args& args) {
return true;
}
bool lite::example::update_cryption_key(const Args& args) {
bool update_cryption_key(const Args& args) {
std::string network_path = args.model_path;
std::string input_path = args.input_path;
......@@ -120,5 +119,9 @@ bool lite::example::update_cryption_key(const Args& args) {
printf("max=%e, sum=%e\n", max, sum);
return true;
}
} // namespace
REGIST_EXAMPLE("register_cryption_method", register_cryption_method);
REGIST_EXAMPLE("update_cryption_key", update_cryption_key);
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册